HOMEWORK 3

CSC2515 FALL 2024

e Deadline: Friday, November 8, 2024 at 11:59PM.
e Submission: You need to submit the following files through MarkUs.

— A PDF file including all your answers and plots.

— A Python file, 4. 1.py containing your solution to Question 4.1. (You should write your
own file for this, though you are free to make use of the data.py helper library. There
is no direct starter code for this problem).

— A Python file, 4.2.py containing your solution to Question 4.2. (This should be ex-
tended from the starter code for this problem).

— A Python file, 4.3.py containing your solution to Question 4.3. (This should be ex-
tended from the starter code for this problem).

You can produce your written PDF file however you like (e.g. ITEX, Microsoft Word, etc) as
long as it is readable. Points will be deducted if we have a hard time reading your solutions
or understanding the structure of your code. If the code does not run, you may lose most /all
of your points for that question. Your report must include all the relevant figures and graphs.
We may or may not look at your code or Jupyter Notebook.

e Late Submission: 10% of the marks will be deducted for each day late, up to a maximum
of 3 days. After that, no submissions will be accepted.

e Collaboration: You can discuss the assignment with up to two other students (group of
three). You can work on the code together. But each of you need to write your homework
report individually. You must mention the name of your collaborators clearly in the report
and the source code.

1. Backpropagation — 20pts.

The goal of this exercise is to help you practice how backpropagation works. We consider
a simple variation of the feedforward fully-connected network. In the usual feedforward fully-
connected network, each layer is connected to its previous layer. The main difference here is that
the second hidden layers is connected to the input too. The computation graph and how each
computation is performed is as follows:

z1 = WOz with z € R?
h=o0(z) with heR?
z=h+x

y = W@z,

1
L= §(y—t)2 with ¢ € R.

1

Here o is the activation function, and you can assume that it is differentiable. Answer the following
questions:

(a) [4pt] Determine the dimensions of WO, W, 2, and 2.

(b) [2pt] Calculate the number of parameters in this network, as a function of d. You need to
show how you get to the solution.

(c) [14pt] Compute the gradient of loss £ with respect to all variables. That is, compute

You need to show all the steps and simplify the solution.

2. Multi-Class Logistic Regression — 10pts.
The goal of this exercise is to verify the formula on Slide 96 of Lecture 3. Consider

z=Wx
y = softmax(z)
K
Lep(ty) = —tTlogy = —> t;logys
k=1

Note that if 2 € R?, the dimension of W is K x d. We denote its k-th row by wyj. The vector y
is a function of W and x. And the output t is a one-hot encoding of the output.
Recall that the k-th component of y is

Y = softmax(z1,...,2K)k = %.
> w1 exp(zi)
(a) [5pt] Compute
Ok
8zk/ ’

for any k, k' = 1,..., K (note that k¥ and ¥’ may or may not be the same). Try to write it
in a compact form (no exp(---) would be needed).
(b) [5pt] Compute
8[’CE(t7 y(x; W))
8Wk

You need to show all the derivations in order to get the full mark. The final solution alone will
not give you any mark, as it is already shown on the slide.

3. Class-Conditional Gaussians — 30 pts. In this question, you will derive the maximum
likelihood estimates for class-conditional Gaussians with independent features (diagonal covari-
ance matrices), i.e., Gaussian Naive Bayes, with shared variances.

Start with the following generative model for a discrete class label y € {1,2,...,k} and a real-
valued vector of d features x = (z1, z2, ..., xq):

(3.1) ply = k) = ay,
D

D ~1/2 (o1)?
(3.2) p(X|ly =k, p,0) = (H 27mi2> exp (— Z 12;;]“>)
i=1 i v

=1

where oy, is the prior on class k, 022 are the shared variances for each feature (common for all
classes), and pu; is the mean of the feature ¢ conditioned on class k. We use a to denote the
vector with elements ay. Similarly, o denotes the vector of variances. The matrix of class means
is written g where the kth row of p is the mean for class k.

1. [4pt] Use Bayes’ rule to derive an expression for p(y = k|z, u, o). [Hint: Use the law of
total probability to derive an expression for p(x|u, o).]

2. [8pt] Write down the expression for the negative likelihood function (NLL)

(33) 6(07 ‘D) = - logp(y(1)7x(1)7y(2)7x(2)7 Ty y(N)) X(N) | 0)

of a particular dataset D = {(y1),xM) (3 x@) ... (3N x()} with parameters § =
{a, pu, 0} (assume that the data points are i.i.d.)

3. [10pt] Take partial derivatives of the likelihood with respect to each of the parameters p;
and with respect to the shared variances O'Z-Q.

4. [8pt] Find the maximum likelihood estimates for p and o.

4. Handwritten Digit Classification — 65 points.

For this question you will build classifiers to label images of handwritten digits. Each image
is 8 by 8 pixels and is represented as a vector of dimension 64 by listing all the pixel values
in raster scan order. The images are grayscale and the pixel values are between 0 and 1. The
labels y are 0,1,2,--- ,9 corresponding to which character was written in the image. There
are 700 training cases and 400 test cases for each digit; they can be found in a3digits.zip.

Starter code written in Python is provided to help you load the data. A skeleton is also
provided for each question that you should use to format your solution. You are welcome to
use any other programming language, as long as your code is functional and modular.

Please note that if you are asked to report/compute quantities these should
be clearly displayed in your written report. It is not sufficient to simply print
these as an output of your code. The same applies to plots and figures.

4.1. Warmup: Multi-Layer Perceptron Classifier — 10pt.

(a) [2pt] Load the data and plot the means for each of the digit classes in the training
data (include these in your report). Given that each image is a vector of size 64, the
mean will be a vector of size 64 which needs to be reshaped as an 8 x 8 2D array to be
rendered as an image. Plot all 10 means side by side using the same scale.

(b) [5pt] Build a simple multi-layer perceptron neural network using PyTorch. Your input
layer needs one unit for each pixel; and given that you are distinguishing among 10
classes, the output layer will need 10 units. Other than that, you are free to experiment
with the network architecture (e.g., number of hidden layers).

i. Keep the size (width) of each layer fixed at some value K,, (which you choose and
specify in your report). Keeping all other hyperparameters constant (e.g., learning
rate, optimizer, etc.), vary the depth of the network from 0 to 10, and report the
train and test classification accuracy associated with each network depth.

ii. Keep the depth (width) of each layer fixed at some value K4 (which you choose and
specify in your report). Keeping all other hyperparameters constant (e.g., learning
rate, optimizer, etc.), vary the width of each network layer for ten different values
of your choosing. Report the train and test classification accuracy associated with
each width.

(c) [4pt] Keeping the architecture of the network fixed at five layers of width 64 each, use
10 fold cross validation to find the optimal dropout for the network (apply this dropout
uniformly to each network layer). You may use the KFold implementation in sklearn.
Report the value of this dropout parameter along with the train, validation, and test
set classification accuracies, averaged across folds where applicable.

(d) Using the best performing model from the previous section, briefly summarize its per-
formance using the following metrics. In many practical settings, measuring MSE or
error rate is insufficient; instead, the following metrics (which were not explicitly cov-
ered in lecture, but will be very useful for your final projects) are more commonly used
in practical settings. Your response for each metric should contain two things: (a) a
1-2 sentence description of what each metric is measuring, and (b) the reported value

5

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

for that metric using your neural network model. Please evaluate the following five
metrics:

i. ROC (Receiver Operating Characteristics) curve

ii. Confusion Matrix

iii. Accuracy

iv. Precision

v. Recall

(The following may be a good starting point to build your intuition about each of the
above metrics: Receiver operating characteristic)

4.2. Conditional Gaussian Classifier Training — 25 pts.

Using maximum likelihood, fit a set of 10 class-conditional Gaussians with a separate, full
covariance matrix for each class. Remember that the conditional multivariate Gaussian
probability density is given by

_ _ 1 _
(41) p(xly =k, 5p) = (2m) 2|5y 1/2exp(—2<x—uk>T2k1<x—uk>).

1
You should take p(y = k) = 0 You will compute parameters puy; and ¥y, for k € {0,...,9}

and j € {1,...,64}. You should implement the covariance computation yourself, i.e., without
the aid of ‘np.cov’. (Hint: To ensure numerical stability you may have to add a small positive
value to the diagonal of each covariance matrix. For this assignment you can add 0.01I to
each matrix.)

(a) [19pt] Implement the conditional Gaussian classifier as specified above. Plot an 8 by
8 image of the log of the diagonal elements of each covariance matrix ;. Plot all ten
classes side by side using the same grayscale.

(b) [3pt] Using the parameters you fit on the training set and the Bayes’ rule, compute
the average conditional log-likelihood, i.e. % Zf\il log p(y™|x(,) on both the train
and test set and report it. (Here 6 denotes all the estimated parameters.)

(c) [3pt] Select the most likely posterior class for each training and test data point as your
prediction, and report your accuracy on the train and test set.

4.3. Naive Bayes Classifier Training — 30 pts.
(a) [1pt] Convert the real-valued features x into binary features b using 0.5 as a threshold:
bj = 1if x; > 0.5 otherwise b; = 0.

(b) [15pt] Using these new binary features b and the class labels, train a Bernoulli Naive
Bayes classifier using MAP estimation with prior Beta(o,) with a = 8 = 2. In
particular, fit the model below on the training set.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

(f)

(12) Py =k =15

(4.3) plb; = 1ly = k) = i,

(4.4) p(bly =k, n) =TI, (1) (1 —)
(4.5) p(nk;) = Beta(2,2)

You should compute parameters n; for k € {0,...,9} and j € {1,...,64}.

Prior as Pseudo-Counts:. Instead of explicitly considering the Beta distribution
prior in the Bernoulli likelihood model, you can add two training cases to your data
set for each class, one of which has every pixels OFF and the other has every pixels
ON. Make sure you understand why this is equivalent to using a prior. You may use
either schemes in your own code.

[2pt] Plot each of your m; vectors as an 8 by 8 grayscale image. These should be
presented side by side and with the same scale.

[4pt] Given your parameters, sample one new data point using your generative model
for each of the 10 digit classes. Plot these new data points as 8 by 8 grayscale images
side by side.

[4pt] Using the parameters you fit on the training set and Bayes’ rule, compute the
average conditional log-likelihood, i.e. % Zf\;l log p(y®|x(*, 0) on both the train and
test set and report it.

[4pt] Select the most likely posterior class for each training and test data point, and
report your accuracy on the train and test set.

	Backpropagation – 20pts
	Multi-Class Logistic Regression – 10pts
	Class-Conditional Gaussians – 30 pts
	Handwritten Digit Classification – 65 points
	Warmup: Multi-Layer Perceptron Classifier – 10pt
	Conditional Gaussian Classifier Training – 25 pts
	Naive Bayes Classifier Training – 30 pts

