CSC 2515: Introduction to Machine Learning

Lecture 2: Decision Trees

Rahul G. Krishnan?

University of Toronto and Vector Institute

1
Credit for slides goes to many members of the ML Group at the U of T, and beyond, including
(recent past): Roger Grosse, Amir-Massoud Farahmand, Murat Erdogdu, Richard Zemel, Juan Felipe
Carrasquilla, Emad Andrews, and myself.
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Today

e KNN: Good method with reasonable theoretical guarantees, but
not very explainable.
e Decision Trees

» Simple but powerful learning algorithm

» More explainable; somehow similar to how people make decisions

» One of the most widely used learning algorithms in Kaggle
competitions

» Lets us introduce ensembles, a key idea in ML

o Useful Information Theoretic concepts (entropy, mutual
information, etc.)

Skills to Learn:
e Basic concepts of information theory

@ Decision trees
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Decision Trees

@ Decision trees make predictions by recursively splitting on different
attributes according to a tree structure.

@ Example: classifying fruit as an orange or lemon based on height and
width

B/vidth > 6.5cm? ]

Yes No

helght >9.5cm? helght > 6.0cm?

/\ l\
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Decision Trees

Test example

I [width > 6.5cm? ]

[height>9.5cm? J [height>6.0cm? ]
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Decision Trees
@ For continuous attributes, split based on less than or greater than some
threshold

@ Thus, input space is divided into regions with boundaries parallel to axes

@ The decision tree defines a function:

height (cm)

4 ® oranges
4 lemons
;‘ 6 8 10
width (cm)
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Example with Discrete Inputs

@ What if the attributes are discrete?

Input Attributes

Example
Alt | Bar | Fri | Hun| Pat | Price | Rain | Res | Type Est

X1 Yes| No| No | Yes| Some| $$% No | Yes| French | 0-10
X3 Yes| No | No | Yes| Full 3 No | No Thai | 30-60
X3 No | Yes| No | No | Some 3 No | No | Burger| 0-10
X4 Yes | No | Yes| Yes| Full 3 Yes | No Thai | 10-30
X5 Yes| No | Yes| No Full | $3$ | No | Yes| French| >60
Xg No | Yes| No | Yes| Some| $$ | Yes| Yes| ltalian | 0-10
X7 No | Yes| No | No | None 3 Yes | No | Burger | 0-10
Xg No| No| No| Yes| Some| 3% Yes | Yes Thai 0-10
Xg No | Yes | Yes| No Full $ Yes | No | Burger | >60
X10 Yes | Yes| Yes| Yes| Full | $$8 | No | Yes| Italian | 10-30
X11 No| No| No| No | None 3 No | No Thai 0-10
X12 Yes | Yes| Yes| Yes| Full 3 No | No | Burger | 30-60

1. | [ Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. | | Fri/Sat: true on Fridays and Saturdays.

4. | | Hungry: whether we are hungry.

5. | | Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. | | Price: the restaurant's price range ($, $$, $$$).

7. | | Raining: whether it is raining outside.

8, Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger)

Attributes: |10 || WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Intro ML (UofT)

CSC2515-Lec2

Goal
WillWait
y1 = Yes
y2 = No
ys = Yes
Yy = Yes
ys = No
ys = Yes
yr = No
ys = Yes
Yo = No
y10 = No
y11 = No
Y12 = Yes
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Decision Tree: Example with Discrete Inputs

@ Possible tree to decide whether to wait (T) or not (F)

Alternate?
No Yes

| Reservation? || Fri/Sat? |
No Yes No Yes

No Yes

Alternate?
No
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Decision Trees

[Atternate? | [ Hungry? |
No Yes No Yes

| Reservation? || Fri/Sat? \ | Alternate? |

@ Internal nodes test attributes
@ Branching is determined by attribute value

o Leaf nodes are outputs (predictions)

Intro ML (UofT) CSC2515-Lec2 9/41



Expressiveness

o Discrete-input, discrete-output case:
» Decision trees can express any function of the input attributes
» Example: For Boolean functions, the truth table row — path to leaf

A B AxorB
F F F
F
F
T T F

» Q: What is the decision tree for AND and OR?

e Continuous-input, continuous-output case:
» Can approximate any function arbitrarily closely
[Slide credit: S. Russell]
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Decision Tree: Classification and Regression

e Each path from root to a leaf defines a region
R,,, of input space

o Let {(x(mv) ¢m)y . (x(mx) $(m))} be the
training examples that fall into R, i

o Classification tree:
» discrete output, i.e., y € {1,...,C}.

> leaf value y™ typically set to the most common value in
{tma) o m)Y e

y™ < argmax Z]I{t = ¢(may,
te{1,....C} ]

Q: Why is this a sensible thing to do?
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Decision Tree: Classification and Regression

e Each path from root to a leaf defines a region
R,,, of input space

o Let {(z(m1) ¢t(m))  (x(m) (M)} be the y
training examples that fall into R, @ [+

AAAAAA

o Regression tree:
» continuous output, i.e, y € R

» leaf value ™ typically set to the mean value in {t(m1) ... ¢(ms)}
(Q: Why?)
Note: We will focus on classification.
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How do we Learn a DecisionTree?

e How do we construct a useful decision tree?
o We want to find a “simple” tree that explains data well.

» Simple: Minimal number of nodes
» There should be enough samples per region
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Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies
training set is an NP complete problem (see Hyafil & Rivest’76).

@ Resort to a greedy heuristic!

e Start with empty decision tree and complete training set

» Split (i.e., partition dataset) on the “best” attribute.
» Recurse on subpartitions

@ When should we stop?
@ Which attribute is the “best”?

» We define a notion of gain of a split
» Gain is defined based on change in some criteria before and after a
split.

» Various notions of gain
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Learning Decision Trees

Which attribute is the “best”?

e Let us choose the accuracy (i.e., misclassification error (or rate) L
— the number of incorrect classifications) as the criteria, and define

the accuracy gain.

o Let us define accuracy gain:
» Suppose that we have region R. Denote the loss of that region as
L(R).

» We split R to two regions Ry and Rs.

» What is the accuracy of the split regions?

height (cm)
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(UofT)

> T

3
°

6
width (cm)

8

® oranges
A lemons

10
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Learning Decision Trees

e Misclassification loss before the split: L(R)
e Misclassification loss after the split:

| R | 12|
——L(Ry) + —L(Ry)
|R| |R|
e Accuracy gain is
Ry|L(R Ro|L(R
Ly - RILCRD) + |RolL(R)
|R|
e Note: Different splits lead to different accuracy gains.
R
" é o R Y R2 0 A1 4 R2
g8 ‘ 2% g8 ‘5: 3% g8 }: s
: % : “o% : Lok
£, H g,
4 H o oranges 4 7.. © oranges 4 b o oranges
A \empns 4 lemons . |4 lemons
4 6 8 10 4 6 8 10 4 6 8 10
width (cm) width (cm) width (cm)
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Choosing a Good Split

@ Accuracy is not always a good measure to decide the split. Why?

\ 100 lemons

49 oranges

’ width > 6.5 cm?

YES NO

A
//

50 lemons Sagn;uns
0 oranges 49 oranges

o Is this split good? Accuracy gain is

L(R) — [Ri|L(Ry) + |Bo|L(Rp) _ 49 50x0+99x g5 _
|R1| + |R2| 149 149 N

e But we have reduced our uncertainty about whether a fruit is a
lemon!
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Choosing a Good Split

e We can use uncertainty as the criteria, and use gain in the
certainty (or gain in the reduction of uncertainty) to decide the
split

e How can we quantify uncertainty in prediction for a given leaf
node?

» All examples in leaf have the same class: good (low uncertainty)
» Each class has the same number of examples in leaf: bad (high
uncertainty)

o Idea: Use counts at leaves to define probability distributions, and
use information theory to measure uncertainty
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Basics of Information Theory
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Flipping Two Different Coins

Q: Which coin is more uncertain?

Sequence 1:
0001000000000 00100 ...7

Sequence 2:
1010111010011 0101 ...7
16
8 10
Versus
2 Ll
 —
1 0 1
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Quantifying Uncertainty

Entropy is a measure of expected “surprise”: How uncertain are we of

the value of a draw from this distribution?

H(X) = —Exp[logy p(X)] = = Y plx)logy p()

zeX
8/9
4/9 5B
L
— o 1
0 1
—glogag —gloga g~ 5 —gl0ga 5 — 5 logo 5 ~0.99

e Averages over information content of each observation
e Unit = bits (based on the base of logarithm)
@ A fair coin flip has 1 bit of entropy
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Entropy

ZP z) logy p(z)

reX

e Q: What is the entropy of a uniform distribution over
X =A{1,...,N}?

e Q: What is the entropy of a distribution concentrated on one of
the outcomes (that is, p = (1,0,0,...,0))?

o Q: What is the entropy of a Bernoulli random variable with
probability of 1 being p (and 1 — p for 0)7

entropy

1.0
08
06
04

0.2

robability p of heads
0.2 0.4 0.6 0.8 1.0 P Ve
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Entropy

o “High Entropy”:

» Variable has a uniform-like distribution

» Flat histogram

» Values sampled from it are less predictable
o “Low Entropy”

» Distribution of variable has peaks and valleys
» Histogram has lows and highs
» Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy of a Joint Distribution

e Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy [Not Cloudy
Raining 24/100 1/100
Not Raining| 25/100 50/100
HX,)Y) = =Y Y plx,y)log, p(x,y)
TEX yey
24 24 1 1 25 25 50

= ——1lo

— 10,

100 °82700 100 ®2700 100 %2700 100

~ 1.56bits

Q: What weather condition has 2 bits of information?
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Specific Conditional Entropy

e Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy |Not Cloudy
Raining 24/100 1/100
Not Raining| 25/100 50/100

e What is the entropy of cloudiness Y, given that it is raining?

H(Y|X = raining) =

— " plylraining) log, p(y|raining)

yey

24 U 11
25 98295 T 95 98255

0.24bits

o We used p(y|z) = ) and p(z) =

Intro ML (UofT)

p(z)
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>, p(x,y) (sum in a row)
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Conditional Entropy

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ The expected conditional entropy:

HY[X) = Ex peHY|X)] (1)

Intro ML (UofT)

= Y p@H(YIX =a)

TEX

- — Z Zp(x, y) logy p(y|z)

reX yey
= —Exy)p(eyloge p(Y[X)]
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Conditional Entropy

e Example: X = {Raining, Not raining}, ) = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

e What is the entropy of cloudiness (Y'), given the knowledge of
whether or not it is raining?

HY|X) = Y p@HY|X =x)
reX
1 - 3 -
= ZH(Y\ralnlng) + ZH(Y|not raining)
0.75 bits
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Conditional Entropy

]
oo

e Some useful properties for the discrete case:

» H is always non-negative.
» Chainrule: H(X,Y)=HX|Y)+ HY)=HY|X)+ H(X).
» If X and Y independent, then X does not tell us anything about Y:
HY|X)=H().
» If X and Y independent, then H(X,Y) = H(X) + H(Y).
» But Y tells us everything about Y: H(Y]Y) = 0.
» By knowing X, we can only decrease uncertainty about Y:
HY|X)<H(Y).
Exercise: Verify these!
The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and ... .
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Information Gain

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

e How much information about cloudiness do we get by discovering
whether it is raining?

I(X;Y)=1IG(Y|X) = H(Y)-H(Y|X)
0.25 bits

o This is called the information gain in Y due to X, or the mutual
information of ¥ and X

e If X is completely uninformative about Y: IG(Y|X) =0

e If X is completely informative about Y: IG(Y|X) = H(Y)

o Information gain measures the informativeness of a variable, which
is exactly what we desire in a decision tree attribute!
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Back to Decision Trees
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Revisiting Our Original Example

@ What is the information gain of thls spht7

' 100 lemons

| width>65cm? |
\ | 49 oranges

YES NO

50 lemons 50 lemons
0 oranges 49 oranges

@ Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left
or right split taken, and treat counts as probabilities.
@ Root entropy: H(Y) = — 2 log, (%) — 292 log,(199) ~ 0.91
@ Leafs entropy: H(Y|B = left) =0, H(Y|B = right) ~
IGYY|B)=H(Y)—- H(Y|B)
=H®Y) - [H(Y\B:left)IP’(B:left)+
H (Y |B=right)P(B=right)]

~091—[0-241-2]~024>0
~ 0. 5 5]~ 0. .
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Constructing Decision Trees

10 &g i W |
et .
IO
1.,
_ 8 3
§ ke
= (4
5
N RS— é Yes
—-
* > [height>9.5cm? [heigh|>6,0cm? ]
4 s o oranges||
4 lemons Yes/\No YesN
4 6 8 10
width (cm) A-ﬂ—ll ‘d—lll

@ At each level, one must choose:

1. which variable to split.
2. possibly where to split it.

@ Choose them based on how much information we would gain from
the decision! (choose attribute that gives the highest gain)
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Decision Tree Construction Algorithm

e Simple, greedy, recursive approach, builds up tree node-by-node
e Start with empty decision tree and complete training set

» Split on the most informative attribute, partitioning dataset
» Recurse on subpartitions

@ Possible termination condition: end if all examples in current
subpartition share the same class
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Back to Our Example

Attributes:

Intro ML (UofT)
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Example Input Attributes
Alt | Bar | Fri | Hun| Pat | Price | Rain| Res | Type Est

X1 Yes No | No| Yes| Some| $38% | No | Yes| French| 0-10
Xg Yes | No | No | Yes Full k) No | No Thai 30-60
X3 No | Yes| No | No | Some 3 No | No | Burger| 0-10
X4 Yes | No | Yes| Yes Full k) Yes | No Thai 10-30
X5 Yes No | Yes| No| Full | $$8 | No | Yes| French| >60
Xg No | Yes No | Yes| Some| 8§ | Yes| Yes| ltalian | 0-10
X7 No | Yes| No | No | None $ Yes | No | Burger| 0-10
Xg No | No No| Yes| Some| 8§ | Yes| Yes Thai 0-10
Xg No | Yes Yes| No | Full $ Yes | No | Burger| >60
X109 Yes Yes| Yes| Yes| Full | $8% | No | Yes| ltalian | 10-30
X1 No| No | No| No| None $ No | No Thai 0-10
X192 Yes | Yes| Yes| Yes Full k) No | No | Burger| 30-60

1 Alternate: whether there is a suitable alternative restaurant nearby.

2, Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4. | | Hungry: whether we are hungry.

5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. | | Price: the restaurant's price range ($, $$, $$$).

7. | | Raining: whether it is raining outside.

8, Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger).

10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Goal
WillWait
y1 = Yes
y2 = No
y3 = Yes
ys = Yes
ys = No
yg = Yes
yr = No
ys = Yes
yg = No
y10 = No
yn = No
y12 = Yes

[from: Russell & Norvig]
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Attribute Selection

IG(Y) = H(Y) — H(Y|X)
1G(type) = 1 — [%H(Ym.) + %H(Yht.) + %H(Y|Thai) + %H(Y|Bur.)] —0

2 4 6 2 4
IG(Patrons) =1 — {EH(O’ 1) + EH(I’O) + EH(67 6)
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Which Tree is Better?

Patrons?

French Burger

Patrons?

Fri/Sat? |
No Yes

[ Reservation? ||
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What Makes a Good Tree?

Not too small: need to handle important but possibly subtle
distinctions in data

e Not too big:

» Avoid over-fitting training examples.

» We need enough samples in each region to confidently determine the
output.

» Computational efficiency (avoid redundant, spurious attributes)
» Human interpretability
@ Occam’s Razor: find the simplest hypothesis that fits the
observations
» Useful principle, but not obvious how to formalize simplicity.
» Number of nodes in a tree

» We shall encounter some other ways to formalize simplicity.

o We desire small trees with informative nodes near the root
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Decision Tree Miscellany

o Problems:
» You have exponentially less data at lower levels
> A large tree can overfit the data
» Greedy algorithms do not necessarily yield the global optimum
» Mistakes at top-level propagate down tree

e Handling continuous attributes
» Split based on a threshold, chosen to maximize information gain

@ There are other criteria used to measure the quality of a split, e.g.,
Gini index

@ Trees can be pruned in order to make them less complex

@ Decision trees can also be used for regression on real-valued
outputs. Choose splits to minimize squared error, rather than
maximize information gain.
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Comparison to K-NN

Advantages of decision trees over K-NN

Good with discrete attributes
Easily deals with missing values (just treat as another value)
Robust to scale of inputs; only depends on ordering

Good when there are lots of attributes, but only a few are
important

Fast at test time

More interpretable
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Comparison to K-NN

Advantages of K-NN over decision trees
@ Able to handle attributes/features that interact in complex ways

e Can incorporate interesting distance measures, e.g., shape
contexts.
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Summary

@ There are ways to make Decisions Trees much more powerful
(using a technique called Bagging (Bootstrap Aggregating),
though at the cost of losing some useful properties such as
interpretability. We get to them later.

o Next we get to more modular approaches to designing ML
methods.
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