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Today

KNN: Good method with reasonable theoretical guarantees, but
not very explainable.

Decision Trees
▶ Simple but powerful learning algorithm
▶ More explainable; somehow similar to how people make decisions
▶ One of the most widely used learning algorithms in Kaggle

competitions
▶ Lets us introduce ensembles, a key idea in ML

Useful Information Theoretic concepts (entropy, mutual
information, etc.)

Skills to Learn:

Basic concepts of information theory

Decision trees
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Decision Trees

Decision trees make predictions by recursively splitting on different
attributes according to a tree structure.

Example: classifying fruit as an orange or lemon based on height and
width

Yes No 

Yes No Yes No 
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Decision Trees
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Decision Trees

For continuous attributes, split based on less than or greater than some
threshold

Thus, input space is divided into regions with boundaries parallel to axes

The decision tree defines a function:

f(x) =

r∑
i=1

wiI{x ∈ Ri}
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Example with Discrete Inputs

What if the attributes are discrete?

Attributes:
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Decision Tree: Example with Discrete Inputs

Possible tree to decide whether to wait (T) or not (F)
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Decision Trees

Internal nodes test attributes

Branching is determined by attribute value

Leaf nodes are outputs (predictions)
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Expressiveness

Discrete-input, discrete-output case:
▶ Decision trees can express any function of the input attributes
▶ Example: For Boolean functions, the truth table row → path to leaf

▶ Q: What is the decision tree for AND and OR?

Continuous-input, continuous-output case:
▶ Can approximate any function arbitrarily closely

[Slide credit: S. Russell]
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Decision Tree: Classification and Regression

Each path from root to a leaf defines a region
Rm of input space

Let {(x(m1), t(m1)), . . . , (x(mk), t(mk))} be the
training examples that fall into Rm

Classification tree:
▶ discrete output, i.e., y ∈ {1, . . . , C}.
▶ leaf value ym typically set to the most common value in
{t(m1), . . . , t(mk)}, i.e.,

ym ← argmax
t∈{1,...,C}

∑
mi

I{t = t(mi)}.

Q: Why is this a sensible thing to do?
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Decision Tree: Classification and Regression

Each path from root to a leaf defines a region
Rm of input space

Let {(x(m1), t(m1)), . . . , (x(mk), t(mk))} be the
training examples that fall into Rm

Regression tree:
▶ continuous output, i.e, y ∈ R
▶ leaf value ym typically set to the mean value in {t(m1), . . . , t(mk)}

(Q: Why?)

Note: We will focus on classification.
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How do we Learn a DecisionTree?

How do we construct a useful decision tree?

We want to find a “simple” tree that explains data well.
▶ Simple: Minimal number of nodes
▶ There should be enough samples per region
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Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies
training set is an NP complete problem (see Hyafil & Rivest’76).

Resort to a greedy heuristic!

Start with empty decision tree and complete training set
▶ Split (i.e., partition dataset) on the “best” attribute.
▶ Recurse on subpartitions

When should we stop?

Which attribute is the “best”?
▶ We define a notion of gain of a split
▶ Gain is defined based on change in some criteria before and after a

split.
▶ Various notions of gain
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Learning Decision Trees

Which attribute is the “best”?

Let us choose the accuracy (i.e., misclassification error (or rate) L
– the number of incorrect classifications) as the criteria, and define
the accuracy gain.
Let us define accuracy gain:

▶ Suppose that we have region R. Denote the loss of that region as
L(R).

▶ We split R to two regions R1 and R2.
▶ What is the accuracy of the split regions?
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Learning Decision Trees

Misclassification loss before the split: L(R)
Misclassification loss after the split:

|R1|
|R|

L(R1) +
|R2|
|R|

L(R2)

Accuracy gain is

L(R)− |R1|L(R1) + |R2|L(R2)

|R|
Note: Different splits lead to different accuracy gains.
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Choosing a Good Split

Accuracy is not always a good measure to decide the split. Why?

Is this split good? Accuracy gain is

L(R)− |R1|L(R1) + |R2|L(R2)

|R1|+ |R2|
=

49

149
−

50× 0 + 99× 49
99

149
= 0

But we have reduced our uncertainty about whether a fruit is a
lemon!
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Choosing a Good Split

We can use uncertainty as the criteria, and use gain in the
certainty (or gain in the reduction of uncertainty) to decide the
split

How can we quantify uncertainty in prediction for a given leaf
node?

▶ All examples in leaf have the same class: good (low uncertainty)
▶ Each class has the same number of examples in leaf: bad (high

uncertainty)

Idea: Use counts at leaves to define probability distributions, and
use information theory to measure uncertainty
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Basics of Information Theory
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Flipping Two Different Coins

Q: Which coin is more uncertain?

Sequence 1: 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2: 
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16 

2 
8 10 

0	 1	

versus 

0	 1	
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Quantifying Uncertainty

Entropy is a measure of expected “surprise”: How uncertain are we of
the value of a draw from this distribution?

H(X) = −EX∼p[log2 p(X)] = −
∑
x∈X

p(x) log2 p(x)

0	 1	

8/9 

1/9 

−8

9
log2

8

9
− 1

9
log2

1

9
≈ 1

2

0	 1	

4/9 5/9 

−4

9
log2

4

9
− 5

9
log2

5

9
≈ 0.99

Averages over information content of each observation
Unit = bits (based on the base of logarithm)
A fair coin flip has 1 bit of entropy
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Entropy

H(X) = −
∑
x∈X

p(x) log2 p(x)

Q: What is the entropy of a uniform distribution over
X = {1, . . . , N}?
Q: What is the entropy of a distribution concentrated on one of
the outcomes (that is, p = (1, 0, 0, . . . , 0))?

Q: What is the entropy of a Bernoulli random variable with
probability of 1 being p (and 1− p for 0)?

0.2 0.4 0.6 0.8 1.0
probability p of heads

0.2

0.4

0.6

0.8

1.0

entropy
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Entropy

“High Entropy”:
▶ Variable has a uniform-like distribution
▶ Flat histogram
▶ Values sampled from it are less predictable

“Low Entropy”
▶ Distribution of variable has peaks and valleys
▶ Histogram has lows and highs
▶ Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy of a Joint Distribution

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

= − 24

100
log2

24

100
− 1

100
log2

1

100
− 25

100
log2

25

100
− 50

100
log2

50

100

≈ 1.56bits

Q: What weather condition has 2 bits of information?
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Specific Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness Y , given that it is raining?

H(Y |X = raining) = −
∑
y∈Y

p(y|raining) log2 p(y|raining)

= −24

25
log2

24

25
− 1

25
log2

1

25

≈ 0.24bits

We used p(y|x) = p(x,y)
p(x) and p(x) =

∑
y p(x, y) (sum in a row)
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Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

The expected conditional entropy:

H(Y |X) = EX∼p(x)[H(Y |X)] (1)

=
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x)

= −E(X,Y )∼p(x,y)[log2 p(Y |X)]
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Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness (Y ), given the knowledge of
whether or not it is raining?

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

=
1

4
H(Y |raining) + 3

4
H(Y |not raining)

≈ 0.75 bits
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Conditional Entropy
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Some useful properties for the discrete case:
▶ H is always non-negative.
▶ Chain rule: H(X,Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X).
▶ If X and Y independent, then X does not tell us anything about Y :

H(Y |X) = H(Y ).
▶ If X and Y independent, then H(X,Y ) = H(X) +H(Y ).
▶ But Y tells us everything about Y : H(Y |Y ) = 0.
▶ By knowing X, we can only decrease uncertainty about Y :

H(Y |X) ≤ H(Y ).

Exercise: Verify these!
The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and ... .
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Information Gain

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

How much information about cloudiness do we get by discovering
whether it is raining?

I(X;Y ) = IG(Y |X) = H(Y )−H(Y |X)

≈ 0.25 bits

This is called the information gain in Y due to X, or the mutual
information of Y and X

If X is completely uninformative about Y : IG(Y |X) = 0

If X is completely informative about Y : IG(Y |X) = H(Y )

Information gain measures the informativeness of a variable, which
is exactly what we desire in a decision tree attribute!
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Back to Decision Trees
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Revisiting Our Original Example

What is the information gain of this split?

Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left
or right split taken, and treat counts as probabilities.

Root entropy: H(Y ) = − 49
149 log2(

49
149 )−

100
149 log2(

100
149 ) ≈ 0.91

Leafs entropy: H(Y |B = left) = 0, H(Y |B = right) ≈ 1.

IG(Y |B) = H(Y )−H(Y |B)

= H(Y )−
[
H(Y |B=left)P(B=left)+

H(Y |B=right)P(B=right)
]

≈ 0.91− [0 · 1
3
+ 1 · 2

3
] ≈ 0.24 > 0.
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Constructing Decision Trees

Yes No 

Yes No Yes No 

At each level, one must choose:

1. which variable to split.
2. possibly where to split it.

Choose them based on how much information we would gain from
the decision! (choose attribute that gives the highest gain)
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Decision Tree Construction Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node

Start with empty decision tree and complete training set
▶ Split on the most informative attribute, partitioning dataset
▶ Recurse on subpartitions

Possible termination condition: end if all examples in current
subpartition share the same class
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Back to Our Example

Attributes: [from: Russell & Norvig]
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Attribute Selection

IG(Y ) = H(Y )−H(Y |X)

IG(type) = 1−
[
2

12
H(Y |Fr.) + 2

12
H(Y |It.) + 4

12
H(Y |Thai) +

4

12
H(Y |Bur.)

]
= 0

IG(Patrons) = 1−
[
2

12
H(0, 1) +

4

12
H(1, 0) +

6

12
H(

2

6
,
4

6
)

]
≈ 0.541
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Which Tree is Better?
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What Makes a Good Tree?

Not too small: need to handle important but possibly subtle
distinctions in data

Not too big:
▶ Avoid over-fitting training examples.

▶ We need enough samples in each region to confidently determine the
output.

▶ Computational efficiency (avoid redundant, spurious attributes)
▶ Human interpretability

Occam’s Razor: find the simplest hypothesis that fits the
observations

▶ Useful principle, but not obvious how to formalize simplicity.
▶ Number of nodes in a tree

▶ We shall encounter some other ways to formalize simplicity.

We desire small trees with informative nodes near the root
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Decision Tree Miscellany

Problems:
▶ You have exponentially less data at lower levels

▶ A large tree can overfit the data

▶ Greedy algorithms do not necessarily yield the global optimum

▶ Mistakes at top-level propagate down tree

Handling continuous attributes
▶ Split based on a threshold, chosen to maximize information gain

There are other criteria used to measure the quality of a split, e.g.,
Gini index

Trees can be pruned in order to make them less complex

Decision trees can also be used for regression on real-valued
outputs. Choose splits to minimize squared error, rather than
maximize information gain.
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Comparison to K-NN

Advantages of decision trees over K-NN

Good with discrete attributes

Easily deals with missing values (just treat as another value)

Robust to scale of inputs; only depends on ordering

Good when there are lots of attributes, but only a few are
important

Fast at test time

More interpretable
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Comparison to K-NN

Advantages of K-NN over decision trees

Able to handle attributes/features that interact in complex ways

Can incorporate interesting distance measures, e.g., shape
contexts.
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Summary

There are ways to make Decisions Trees much more powerful
(using a technique called Bagging (Bootstrap Aggregating),
though at the cost of losing some useful properties such as
interpretability. We get to them later.

Next we get to more modular approaches to designing ML
methods.
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