CSC 2515: Introduction to Machine Learning Lecture 3: Regression and Classification with Linear Models

Rahul G. Krishnan¹

University of Toronto and Vector Institute

¹Credit for slides goes to many members of the ML Group at the U of T, and beyond, including (recent past): Roger Grosse, Amir-Massoud Farahmand, Murat Erdogdu, Richard Zemel, Juan Felipe Carrasquilla, Emad Andrews, and myself.

Table of Contents

[Modular Approach to ML](#page-2-0)

[Regression](#page-6-0)

- [Linear Regression](#page-7-0)
- [Basis Expansion](#page-21-0)
- [Regularization](#page-27-0)
- [Probabilistic Interpretation of the Squared Error](#page-39-0)

3 [Gradient Descent for Optimization](#page-46-0)

[Classification](#page-57-0)

- [Linear Classification](#page-58-0)
- [In Search of Loss Function](#page-69-0)
- [Probabilistic Interpretation of Logistic Regression](#page-84-0)
- [Multiclass Classification](#page-89-0)

5 [Stochastic Gradient Descent](#page-96-0)

Modular Approach to ML Algorithm Design

Modular Approach to ML Algorithm Design

- So far, we have talked about *procedures* for learning.
	- ▶ KNN and decision trees.
- For the remainder of this course, we will take a more modular approach:
	- ▶ choose a model describing the relationships between variables of interest
	- \triangleright define a loss function quantifying how bad the fit to the data is
	- \triangleright (possibly) choose a regularizer saying how much we prefer different candidate models (or explanations of data), before (prior to) seeing the data
	- \triangleright fit the model that minimizes the loss function and satisfy the constraint/penalty imposed by the regularizer, possibly using an optimization algorithm
- Mixing and matching these modular components gives us a lot of new ML methods.

Understanding

- The modular approach to ML
- The role of a model
	- ▶ Linear models
	- ▶ How can we make them more powerful and flexible?
- Regularization
- Loss function
	- \triangleright The relation of loss function and the decision problem we want to solve
	- ▶ Some loss functions suitable for regression and classification
	- ▶ Maximum Likelihood interpretation
- Optimization using Gradient Descent and Stochastic Gradient Descent

The Supervised Learning Setup

Recall that in supervised learning:

- There is a target $t \in \mathcal{T}$ (also called response, outcome, output, class)
- There are features $x \in \mathcal{X}$ (also called inputs or covariates)
- The goal is to learn a function $f: \mathcal{X} \to \mathcal{T}$ such that

$$
t \approx y = f(x),
$$

based on given data $D = \{(\mathbf{x}^{(i)}, t^{(i)}) \text{ for } i = 1, 2, ..., N\}.$

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 6 / 106

Image credit: [xkcd](https://xkcd.com/2048/) (cropped)

• Model: In linear regression, we use linear functions of the inputs $\mathbf{x} = (x_1, \ldots, x_D)$ to make predictions y of the target value t:

$$
y = f(\mathbf{x}) = \sum_j w_j x_j + b
$$

- \rightarrow y is the prediction
- \triangleright **w** is the weights
- $\rightarrow b$ is the bias (or intercept) (do not confuse with the bias-variance tradeoff in the next lecture)
- **w** and b together are the parameters
- We hope that our prediction is close to the target: $y \approx t$.

What is Linear? 1 Feature vs. D Features

- If we have only 1 feature: $y = wx + b$ where $w, x, b \in \mathbb{R}$.
- \bullet y is linear in x.

- \bullet If we have D features: $y = \mathbf{w}^\top \mathbf{x} + b$ where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^D$, $b \in \mathbb{R}$
- \bullet y is linear in **x**.

Relation between the prediction y and inputs x is linear in both cases.

Recall that

$$
y = f(\mathbf{x}) = \sum_j w_j x_j + b
$$

Linear Regression

We have a dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^N$ where,

 $\mathbf{x}^{(i)} = (x_1^{(i)}$ $\binom{i}{1}, x_2^{(i)}$ $\{a_2^{(i)},...,x_D^{(i)}\}^{\top} \in \mathbb{R}^D$ are the inputs, e.g., age, height,

- $t^{(i)} \in \mathbb{R}$ is the target or response, e.g., income,
- predict $t^{(i)}$ with a linear function of $\mathbf{x}^{(i)}$:

- $t^{(i)} \approx y^{(i)} = \mathbf{w}^\top \mathbf{x}^{(i)} + b$
- Find the "best" line (\mathbf{w}, b) .
- Q: How should we define the best line?

Linear Regression – Loss Function

- How to quantify the quality of the fit to data?
- A loss function $\mathcal{L}(y, t)$ defines how bad it is if, for some input **x**, the algorithm predicts y , but the target is actually t .
- Squared error loss function:

$$
\mathcal{L}(y,t) = \frac{1}{2}(y-t)^2
$$

• $y - t$ is the residual, and we want to make its magnitude small

The $\frac{1}{2}$ factor is just to make the calculations convenient.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 12 / 106

Linear Regression – Loss Function

Cost function: loss function averaged over all training examples

$$
\mathcal{J}(\mathbf{w}, b) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y^{(i)}, t^{(i)})
$$

=
$$
\frac{1}{2N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)})^2
$$

=
$$
\frac{1}{2N} \sum_{i=1}^{N} (\mathbf{w}^{\top} \mathbf{x}^{(i)} + b - t^{(i)})^2
$$

To find the best fit, we find a model (parameterized by its weights w and b) that minimizes the cost:

$$
\underset{(\mathbf{w},b)}{\text{minimize}} \mathcal{J}(\mathbf{w},b) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y^{(i)}, t^{(i)}).
$$

• The terminology is not universal. Some might call "loss" pointwise loss and the "cost function" the empirical loss or average loss.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 13/106

Vector Notation

• We can organize all the training examples into a design matrix **X** with one row per training example, and all the targets into the target vector t.

Computing the predictions for the whole dataset:

$$
\mathbf{Xw} + b\mathbf{1} = \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}^{(1)} + b \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}^{(N)} + b \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{pmatrix} = \mathbf{y}
$$

Vectorization

Computing the squared error cost across the whole dataset:

$$
\mathbf{y} = \mathbf{X}\mathbf{w} + b\mathbf{1}
$$

$$
\mathcal{J} = \frac{1}{2N} ||\mathbf{y} - \mathbf{t}||^2
$$

- Note that sometimes we may use $\mathcal{J} = \frac{1}{2}$ $\frac{1}{2} \|\mathbf{y} - \mathbf{t}\|^2$, without $\frac{1}{N}$ normalizer. That would correspond to the sum of losses, and not the average loss. That does not matter as the minimizer does not depend on N.
- We can also add a column of 1s to the design matrix, combine the bias and the weights, and conveniently write

$$
\mathbf{X} = \begin{bmatrix} 1 & [\mathbf{x}^{(1)}]^\top \\ 1 & [\mathbf{x}^{(2)}]^\top \\ 1 & \vdots \end{bmatrix} \in \mathbb{R}^{N \times D+1} \text{ and } \mathbf{w} = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \end{bmatrix} \in \mathbb{R}^{D+1}
$$

Then, our predictions reduce to $y = Xw$.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 15/106

Solving the Minimization Problem

- We defined a model (linear).
- We defined a loss and the cost function to be minimized.
- Q: How should we solve this minimization problem?

Solving the Minimization Problem

- Recall from your calculus class: minimum of a differentiable function (if it exists) occurs at a critical point, i.e., point where the derivative is zero.
- Multivariate generalization: set the partial derivatives to zero (or equivalently the gradient).
- We would like to find a point where the gradient is (close to) zero. How can we do it?
- Sometimes it is possible to directly find the parameters that make the gradient zero in a closed-form. We call this the direct solution.
- We may also use optimization techniques that iteratively get us closer to the solution. We will get back to this soon.

Direct Solution

Partial derivatives: derivatives of a multivariate function with respect to (w.r.t.) one of its arguments.

$$
\frac{\partial}{\partial x_1} f(x_1, x_2) = \lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h}
$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- \bullet Example: partial derivatives of the prediction y with respect to weight w_i and bias b:

$$
\frac{\partial y}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\sum_{j'} w_{j'} x_{j'} + b \right]
$$

$$
= x_j
$$

$$
\frac{\partial y}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{j'} w_{j'} x_{j'} + b \right]
$$

$$
= 1
$$

Direct Solution

The derivative of loss: We apply the chain rule: first we take the derivative of the loss $\mathcal L$ w.r.t. output y of the model, and then the derivative of the output y w.r.t. a parameter of the model such as w_j or b:

$$
\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} \frac{\partial y}{\partial w_j}
$$

$$
= \frac{\mathrm{d}}{\mathrm{d}y} \left[\frac{1}{2} (y - t)^2 \right] \cdot x_j
$$

$$
= (y - t)x_j
$$

$$
\frac{\partial \mathcal{L}}{\partial b} = y - t
$$

Cost derivatives (average over data points):

$$
\frac{\partial \mathcal{J}}{\partial w_j} = \frac{1}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)}) x_j^{(i)}
$$

$$
\frac{\partial \mathcal{J}}{\partial b} = \frac{1}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)})
$$

- Recall that the output y is a function of the parameters as $y = \mathbf{w}^\top \mathbf{x}$.
- The minimum of the cost function must occur at a point where the partial derivatives are zero, i.e.,

$$
\nabla_{\mathbf{w}} \mathcal{J} = 0 \Leftrightarrow \frac{\partial \mathcal{J}}{\partial w_j} = 0 \quad (\forall j), \qquad \frac{\partial \mathcal{J}}{\partial b} = 0.
$$

 \bullet If $\partial \mathcal{J}/\partial w_i \neq 0$, you could reduce the cost by changing w_i .

Direct Solution

If we follow this recipe, we get that we have to set the gradient of ${\cal J} = {1 \over 2I}$ $\frac{1}{2N}$ ||**y** – **t**||², with **y** = **Xw** (bias absorbed in **X**) equal to zero. We have

$$
\mathcal{J} = \frac{1}{2N} (\mathbf{X} \mathbf{w} - \mathbf{t})^{\top} (\mathbf{X} \mathbf{w} - \mathbf{t}),
$$

so

$$
\nabla_{\mathbf{w}} \mathcal{J} = \frac{1}{N} \mathbf{X}^{\top} (\mathbf{X} \mathbf{w} - \mathbf{t}) = 0 \Rightarrow (\mathbf{X}^{\top} \mathbf{X}) \mathbf{w} = \mathbf{X}^{\top} \mathbf{t}.
$$

This is a linear system of equations.

Q: What are the dimensions of each component? Assuming that $X^{\top}X$ is invertible, the optimal weights are

$$
\mathbf{w}^{\mathrm{LS}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{t}.
$$

This solution is also called Ordinary Least Squares (OLS) solution.

At an arbitrary point **x**, our prediction is $y = \mathbf{w}^{LS^{\top}} \mathbf{x}$.

 \bullet Q: What happens if $X^{\top}X$ is not invertible?

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 21 / 106

Basis Expansion (Feature Mapping)

The relation between the input and output may not be linear.

- We can still use linear regression by mapping the input feature to another space using basis expansion (or feature mapping) $\psi(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}^d$ and treat the mapped feature (in \mathbb{R}^d) as the input of a linear regression procedure.
- Let us see how it works when $\mathbf{x} \in \mathbb{R}$ and we use polynomial feature mapping.

Polynomial Feature Mapping

Fit the data using a degree- M polynomial function of the form:

$$
y = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=0}^{M} w_i x^i
$$

- The feature mapping is $\psi(x) = [1, x, x^2, ..., x^M]^\top$.
- We can still use the linear regression framework with least squares loss to find **w** since $y = \boldsymbol{\psi}(x)^\top \mathbf{w}$ is linear in $w_0, w_1, ...$
- In general, ψ can be any function. Another example: Fourier map $\psi =$
	- $[1, \sin(2\pi x), \cos(2\pi x), \sin(4\pi x), \cos(4\pi x), \sin(6\pi x), \cos(6\pi x), \cdots]^\top$.
- Q: Other examples?

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 23 / 106

 $y=w_0$

$$
y = w_0 + w_1 x
$$

$$
y = w_0 + w_1 x + w_2 x^2 + w_3 x^3
$$

$$
y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \ldots + w_9 x^9
$$

Model Complexity and Regularization

Image credit: Pattern Recognition and Machine Learning (Chapter 3), Christopher Bishop.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 28 / 106

Underfitting $(M=0)$: model is too simple — does not fit the data. Overfitting $(M=9)$: model is too complex — fits perfectly.

Good model (M=3): Achieves small test error (generalizes well).

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 29 / 106

- As M increases, the magnitude of coefficients gets larger.
- For $M = 9$, the coefficients have become finely tuned to the data.
- Between data points, the function exhibits large oscillations.

As the degree M of the polynomial increases

- \bullet the training errors decreases \bullet the training errors decreases;
- the test error, however, initially decreases, but then increases. corresponding function y(x, w!) exhibits wild oscillations.

• Training and test error as a function of $#$ training examples and # parameters:

Regularization for Controlling the Model Complexity

- \bullet The degree of the polynomial M controls the complexity of the model.
- \bullet The value of M is a hyperparameter for polynomial expansion, just like K in KNN or the depth of a tree in a decision tree. We can tune it using a validation set.
- Restricting the number of parameters of a model $(M \text{ here})$ is a crude approach to control the complexity of the model.
- A better solution: keep the number of parameters of the model large, but enforce "simpler" solutions within the same space of parameters.
- This is done through regularization or penalization.
	- \triangleright Regularizer (or penalty): a function that quantifies how much we prefer one hypothesis vs. another, prior to seeing the data.
- \bullet Q: How?!

We can encourage the weights to be small by choosing the ℓ_2 (or L^2) of the weights as our regularizer or penalty:

$$
\mathcal{R}(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2 = \frac{1}{2} \sum_j w_j^2.
$$

- \triangleright Note: To be precise, we are regularizing the *squared* ℓ_2 norm.
- The regularized cost function makes a tradeoff between fit to the data and the norm of the weights:

$$
\mathcal{J}_{\text{reg}}(\mathbf{w}) = \mathcal{J}(\mathbf{w}) + \lambda \mathcal{R}(\mathbf{w}) = \mathcal{J}(\mathbf{w}) + \frac{\lambda}{2} \sum_{j} w_j^2.
$$

ℓ_2 (or L^2) Regularization

• The regularized cost function:

$$
\mathcal{J}_{\text{reg}}(\mathbf{w}) = \mathcal{J}(\mathbf{w}) + \lambda \mathcal{R}(\mathbf{w}) = \mathcal{J}(\mathbf{w}) + \frac{\lambda}{2} \sum_{j} w_j^2.
$$

- The basic idea is that "simpler" functions have weights w with smaller ℓ_2 -norm and we prefer them to functions with larger ℓ_2 -norms.
	- \triangleright Intuition: Large weights makes the function f have more abrupt changes as a function of the input x; it will be less smooth.
- \bullet If you fit training data poorly, \mathcal{J} is large. If the fitted weights have high values, $\mathcal R$ is large.
- Large λ penalizes weight values more.
- \bullet Here, λ is a hyperparameter that we can tune with a validation set.

ℓ_2 Regularized Least Squares: Ridge Regression

For the least squares problem, we have $\mathcal{J}(\mathbf{w}) = \frac{1}{2N} ||\mathbf{X}\mathbf{w} - \mathbf{t}||^2$.

• When $\lambda > 0$ (with regularization), regularized cost gives

$$
\mathbf{w}_{\lambda}^{\text{Ridge}} = \underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{J}_{\text{reg}}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2N} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}
$$

$$
= (\mathbf{X}^{T}\mathbf{X} + \lambda N\mathbf{I})^{-1} \mathbf{X}^{T} \mathbf{t}.
$$

- The case of $\lambda = 0$ (no regularization) reduces to the least squares solution!
- Q: What happens when $\lambda \to \infty$?
- Note that it is also common to formulate this problem as $\operatorname{argmin}_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$ in which case the solution is $\mathbf{w}_{\lambda}^{\mathrm{Ridge}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{t}.$
Lasso and the ℓ_1 Regularization

• The ℓ_1 norm, or sum of absolute values, is another regularizer:

$$
\mathcal{R}(\mathbf{w}) = \|\mathbf{w}\|_1 = \sum_j |w_j|.
$$

- The Lasso (Least Absolute Shrinkage and Selection Operator) is $\min_{\mathbf{w}} \|\mathbf{X}\mathbf{w}-\mathbf{t}\|_2^2 + \lambda \|\mathbf{w}\|_1$.
- It can be shown that Lasso encourages weights to be exactly zero. \triangleright Q: When is this helpful?

Ridge vs. Lasso – Geometric Viewpoint

We presented regularization as a penalty on the weights, in which we solve

$$
\min_{\mathbf{w}} \mathcal{J}(\mathbf{w}) + \lambda \mathcal{R}(\mathbf{w})
$$

We can also write an equivalent form as a constraint optimization:

$$
\underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{J}(\mathbf{w})
$$

s.t. $\mathcal{R}(\mathbf{w}) \le \mu$,

for a corresponding value of μ .

The Ridge regression and the Lasso can then be written as

$$
\underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|_{2}^{2}
$$
\n
$$
\text{s.t. } \|\mathbf{w}\|_{p} \le \mu \qquad \text{(Lasso: } p = 1; \text{Ridge: } p = 2\text{)}
$$

Ridge vs. Lasso – Geometric Viewpoint

- The set $\{w : ||Xw t||_2^2 \leq \varepsilon\}$ defines ellipsoids of ε cost in the weights space.
- The set $\{w : ||w||_p \leq \mu\}$ defines the constraint on weights defined by the regularizer.
- **The solution would be the smallest** ε **for which these two sets intersects.**
- For $p = 1$, the diamond-shaped constraint set has corners. When the intersection happens at a corner, some of the weights are zero.
- For $p = 2$, the disk-shaped constraint set does not have corners. It does not induce any zero weights.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 39 / 106

Probabilistic Interpretation of the Squared Error

For the least squares: we minimize the sum of the squares of the errors between the predictions for each data point $\mathbf{x}^{(i)}$ and the corresponding target values $t^{(i)}$, i.e.,

$$
\underset{(\mathbf{w}, \mathbf{w}_0)}{\text{minimize}} \sum_{i=1}^{n} (\mathbf{w}^\top \mathbf{x}^{(i)} + b - t^{(i)})^2
$$

$$
\bullet \ t \approx \mathbf{x}^{\top}\mathbf{w} + b, \ (\mathbf{w}, b) \in \mathbb{R}^D \times \mathbb{R}
$$

- We measure the quality of the fit using the squared error loss. Why?
- Even though the squared error loss is intuitive, we did not justify it.
- We provide a probabilistic perspective here.
- There are other justifications too; we get to them in the Bias-Variance decomposition lecture.

Probabilistic Interpretation of the Squared Error

• Suppose that our model arose from a statistical model $(b=0$ for simplicity):

$$
y^{(i)} = \mathbf{w}^\top \mathbf{x}^{(i)} + \epsilon^{(i)},
$$

where $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$ is independent of the input $\mathbf{x}^{(i)}$.

Thus, $y^{(i)}|\mathbf{x}^{(i)} \sim p(y|\mathbf{x}^{(i)}, \mathbf{w}) = \mathcal{N}(\mathbf{w}^{\top}\mathbf{x}^{(i)}, \sigma^2).$

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

Suppose that the input data $\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\}$ are given and the outputs are independently drawn from

$$
t^{(i)} \sim p(y|\mathbf{x}^{(i)}, \mathbf{w}),
$$

with an unknown parameter **w**. So the dataset is $\mathcal{D} = \{(\mathbf{x}^{(1)}, t^{(1)}), \dots, (\mathbf{x}^{(N)}, t^{(N)})\}.$

- The likelihood function is $Pr(\mathcal{D}|\mathbf{w})$.
- The maximum likelihood estimation (MLE) is based on the "principle" suggesting that we have to find a parameter $\hat{\mathbf{w}}$ that maximizes the likelihood, i.e.,

$$
\hat{\mathbf{w}} \leftarrow \underset{\mathbf{w}}{\operatorname{argmax}} \Pr(\mathcal{D}|\mathbf{w}).
$$

Maximum likelihood estimation: after observing the data samples $(\mathbf{x}^{(i)}, t^{(i)})$ for $i = 1, 2, ..., N$, we should choose w that maximizes the likelihood.

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

 \bullet For independent samples, the likelihood function of samples $\mathcal D$ is the product of their likelihoods

$$
p(t^{(1)}, t^{(2)}, \dots, t^{(N)} | \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}, \mathbf{w}) = \prod_{i=1}^{N} p(t^{(i)} | \mathbf{x}^{(i)}, \mathbf{w}) = L(\mathbf{w}).
$$

- \bullet Product of N terms is not easy to minimize.
- Taking log reduces it to a sum. Two objectives are equivalent since log is strictly increasing.
- Maximizing the likelihood is equivalent to minimizing the negative log-likelihood:

$$
\ell(\mathbf{w}) = -\log L(\mathbf{w}) = -\log \prod_{i=1}^{N} p(t^{(i)} | \mathbf{x}^{(i)}; \mathbf{w}) = -\sum_{i=1}^{n} \log p(t^{(i)} | \mathbf{x}^{(i)}; \mathbf{w})
$$

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

Maximum Likelihood Estimator (MLE)

After observing $z^{(i)} = (\mathbf{x}^{(i)}, t^{(i)})$ for $i = 1, ..., N$ independent and identically distributed (i.i.d.) samples from $p(z, \mathbf{w})$, MLE is

$$
\mathbf{w}^{\mathrm{MLE}} = \underset{\mathbf{w}}{\mathrm{argmin}} \quad l(\mathbf{w}) = -\sum_{i=1}^{N} \log p(t^{(i)}|\mathbf{x}^{(i)}; \mathbf{w}).
$$

Probabilistic Interpretation of the Squared Error: From MLE to Squared Error

• Suppose that our model arose from a statistical model:

$$
y^{(i)} = \mathbf{w}^\top \mathbf{x}^{(i)} + \epsilon^{(i)}
$$

where $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$ is independent of anything else.

- $p(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w}) = \frac{1}{\sqrt{2\pi}}$ $\frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2}(y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)})^2\right\}$
- $\log p(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w}) = -\frac{1}{2\sigma^2}(y^{(i)} \mathbf{w}^\top \mathbf{x}^{(i)})^2 \log(\sqrt{2\pi\sigma^2})$
- The MLE solution is

$$
\mathbf{w}^{\mathrm{MLE}} = \underset{\mathbf{w}}{\mathrm{argmin}} \ \mathcal{L}(\mathbf{w}) = \frac{1}{2\sigma^2} \sum_{i=1}^{N} (t^{(i)} - \mathbf{w}^{\top} \mathbf{x}^{(i)})^2 + C.
$$

• As C and σ do not depend on **w**, they do not contribute to the minimization.

 $\mathbf{w}^{\text{MLE}} = \mathbf{w}^{\text{LS}}$ when we work with Gaussian densities.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 45 / 106

Probabilistic Interpretation of the Squared Error: From MLE to Squared Error

• Suppose that our model arose from a statistical model:

$$
y^{(i)} = \mathbf{w}^\top \mathbf{x}^{(i)} + \epsilon^{(i)}
$$

where $\epsilon^{(i)}$ comes from the Laplace distribution, that is, the distribution of $\epsilon^{(i)}$ has density

$$
\frac{1}{2b} \exp \left(\frac{|y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)}|}{2b} \right).
$$

Q: What is the loss in the MLE?

- ► Choice 1: $\frac{1}{N} \sum_{i=1}^{N} |t^{(i)} w^{\top} x^{(i)}|^{1/2}$
- ► Choice 2: $\frac{1}{N} \sum_{i=1}^{N} (t^{(i)} w^{\top} x^{(i)})$
- ► Choice 3: $\frac{1}{N} \sum_{i=1}^{N} |t^{(i)} w^{\top} x^{(i)}|$
- ► Choice 4: $\frac{1}{N} \left| \sum_{i=1}^{N} (t^{(i)} w^{\top} x^{(i)}) \right|$

Q: Can you think of an application area with non-Gaussian probabilistic model?

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 46 / 106

Gradient Descent for Optimization

- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g., all zeros) and repeatedly adjust them in the direction of steepest descent.

Gradient Descent

• Observe:

- ▶ if $\partial \mathcal{J}/\partial w_i > 0$, then increasing w_i increases \mathcal{J} .
- ▶ if $\partial \mathcal{J}/\partial w_i < 0$, then increasing w_i decreases \mathcal{J} .
- The following update decreases the cost function:

$$
w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{J}}{\partial w_j}
$$

= $w_j - \frac{\alpha}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)}) x_j^{(i)}$

- \bullet α is the learning rate or step size. The larger it is, the faster w changes.
	- ▶ We'll see later how to tune the learning rate, but values are typically small, e.g., 0.1 or 0.001.

Gradient Descent

• The method gets its name from the gradient:

$$
\nabla_{\mathbf{w}} \mathcal{J} = \frac{\partial \mathcal{J}}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial \mathcal{J}}{\partial w_1} \\ \vdots \\ \frac{\partial \mathcal{J}}{\partial w_D} \end{pmatrix}
$$

- \blacktriangleright This is the direction of fastest increase in \mathcal{J} . (Q: Why?)
- Update rule in vector form:

$$
\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

$$
= \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}
$$

- Hence, gradient descent updates the weights in the direction of fastest decrease.
- Observe that once it converges, we get a critical point: $\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = 0$.

Intro ML $(Uo f T)$ $CSC2515-Lec3$ $50 / 106$

- Even for linear regression, where there is a direct solution, we sometimes need to use GD.
- Why gradient descent, if we can find the optimum directly?
	- ▶ GD can be applied to a much broader set of models
	- \triangleright GD can be easier to implement than direct solutions
	- \triangleright For regression in high-dimensional spaces, GD is more efficient than direct solution
		- ► Linear regression solution: $(X^T X)^{-1} X^T t$
		- ightharpoontrivian is an $\mathcal{O}(D^3)$ algorithm
		- \blacktriangleright each GD update costs $O(ND)$
		- ▶ Huge difference if $D \gg 1$

Gradient Descent under the ℓ_2 Regularization

• Recall the gradient descent update:

$$
\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

• The gradient descent update of the regularized cost $\mathcal{J} + \lambda \mathcal{R}$ has an interesting interpretation as weight decay (for the ℓ_2 regularizer):

$$
\mathbf{w} \leftarrow \mathbf{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}} + \lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}} \right)
$$

$$
= \mathbf{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}} + \lambda \mathbf{w} \right)
$$

$$
= (1 - \alpha \lambda) \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

Learning Rate (Step Size)

• In gradient descent, the learning rate α is a hyperparameter we need to tune. If we do not choose it right, the procedure may have undesirable convergence properties:

slow progress

oscillations

instability

Good values are typically between 0.001 and 0.1. You should do a grid search if you want good performance, i.e., try $0.1, 0.03, 0.01, \ldots$

• To diagnose optimization problems, it is useful to look at training curves: plot the training cost as a function of iteration.

iteration #

- For a function $f : \mathbb{R}^p \to \mathbb{R}, \nabla f(z)$ denotes the gradient at z which points in the direction of the greatest rate of increase.
- $\nabla f(x) \in \mathbb{R}^p$ is a vector with $[\nabla f(x)]_i = \frac{\partial}{\partial x_i}$ $\frac{\partial}{\partial x_i}f(x)$.
- $\nabla^2 f(x) \in \mathbb{R}^{p \times p}$ is a matrix with $[\nabla^2 f(x)]_{ij} = \frac{\partial^2}{\partial x_i \partial x_j}$ $\frac{\partial^2}{\partial x_i \partial x_j} f(x)$
- At any minimum of a function f, we have $\nabla f(\mathbf{w}) = 0$, $\nabla^2 f(\mathbf{w}) \succeq 0.$
- Consider the problem minimize $\ell(\mathbf{w}) = \frac{1}{2} ||y X\mathbf{w}||_2^2$,
- $\nabla \ell(\mathbf{w}) = X^{\top} (X\mathbf{w} y) = 0 \implies \hat{\mathbf{w}} = (X^{\top} X)^{-1} X^{\top} y$ (assuming $X^{\top}X$ is invertible)

Vectorization

Computing the prediction using a for loop:

```
v = bfor j in range(M):
y \leftarrow w[i] * x[i]
```
For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

$$
\mathbf{w} = (w_1, \dots, w_D)^T \qquad \mathbf{x} = (x_1, \dots, x_D)^T
$$

$$
y = \mathbf{w}^T \mathbf{x} + b
$$

• This is simpler and much faster: $y = np.dot(w, x) + b$

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
	- ▶ Cut down on Python interpreter overhead
	- ▶ Use highly optimized linear algebra libraries
	- ▶ Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

Classification with Linear Models

- Classification: predicting a discrete-valued target
	- ▶ Binary classification: predicting a binary-valued target
- Examples
	- ▶ predict whether a patient has a disease, given the presence or absence of various symptoms
	- ▶ classify e-mails as spam or non-spam
	- \triangleright predict whether a financial transaction is fraudulent
	- \triangleright find out whether a picture is a cat or dog

Binary Linear Classification

- classification: predict a discrete-valued target
- binary: predict a binary target $t \in \{0, 1\}$
	- \triangleright Training examples with $t = 1$ are called positive examples, and training examples with $t = 0$ are called negative examples.
	- \triangleright $t \in \{0,1\}$ or $t \in \{-1,+1\}$ is for computational convenience.
- linear: model is a linear function of x , followed by a threshold r:

$$
z = \mathbf{w}^T \mathbf{x} + b
$$

$$
y = \begin{cases} 1 & \text{if } z \ge r \\ 0 & \text{if } z < r \end{cases}
$$

Some Simplifications

Eliminating the threshold

We can assume without loss of generality (w.l.o.g.) that the threshold is $r = 0$:

$$
\mathbf{w}^T \mathbf{x} + b \ge r \quad \Longleftrightarrow \quad \mathbf{w}^T \mathbf{x} + \underbrace{b - r}_{\triangleq w_0} \ge 0.
$$

Eliminating the bias

• Add a dummy feature x_0 which always takes the value 1. The weight $w_0 = b$ is equivalent to a bias (same as linear regression)

Simplified model

$$
z = \mathbf{w}^T \mathbf{x}
$$

$$
y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}
$$

- Let us consider some simple examples to examine the properties of our model
- Forget about generalization and suppose we just want to learn Boolean functions

NOT x_0 x_1 t $1 \quad 0 \mid 1$ $1 \quad 1 \mid 0$

- This is our "training set"
- What conditions are needed on w_0 , w_1 to classify all examples?
	- ▶ When $x_1 = 0$, need: $z = w_0x_0 + w_1x_1 > 0 \iff w_0 > 0$
	- ▶ When $x_1 = 1$, need: $z = w_0x_0 + w_1x_1 < 0 \Leftrightarrow w_0 + w_1 < 0$
- Example solution: $w_0 = 1, w_1 = -2$
- Is this the only solution?

AND

Example solution: $w_0 = -1.5, w_1 = 1, w_2 = 1$

Input Space, or Data Space for NOT example

- This is the input space. Training examples are points in that space.
- Any weight (hypothesis) w defines half-spaces

$$
\blacktriangleright H_{+} = \{ \mathbf{x} : \mathbf{w}_{-}^{T} \mathbf{x} \ge 0 \}
$$

$$
\blacktriangleright H_{-} = \{ \mathbf{x} : \mathbf{w}^{T} \mathbf{x} < 0 \}
$$

in the input space.

 \triangleright The boundaries of these half-spaces pass through the origin (why?)

- The boundary is the decision boundary: $\{x : w^T x = 0\}$
	- \blacktriangleright In 2-D, it is a line, but think of it as a hyperplane in general.
- If the training examples can be perfectly separated by a linear decision rule, we say that the data is linearly separable.
 L_{Inter} (U_{of}T) csC2515-Lec3 Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 65 / 106

Weight Space

- The left figure is the input space; the right figure is the weight (hypothesis) space.
- To correctly classify each training example x, weights w should belong to a particular half-space in the weight space such that $\mathbf{w}^T \mathbf{x} > 0$ if $t = 1$ (and $\mathbf{w}^T \mathbf{x} < 0$ if $t = 0$).
- For NOT example:

$$
\bullet \ \ x_0 = 1, x_1 = 0, t = 1 \implies (w_0, w_1) \in \{ \mathbf{w} : w_0 > 0 \}
$$

▶ $x_0 = 1, x_1 = 1, t = 0 \implies (w_0, w_1) \in {\mathbf{w}: w_0 + w_1 < 0}$

The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is feasible, otherwise it is infeasible.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 66 / 106

- The AND example requires three dimensions, including the dummy one.
- To visualize data space and weight space for a 3-D example, we can look at a 2-D slice.
- The visualizations are similar.
	- ▶ Feasible set will always have a corner at the origin.

Visualizations of the AND example

- Slice for $x_0 = 1$ - example sol: $w_0 = -1.5$, $w_1 = 1$, $w_2 = 1$ - decision boundary: $w_0x_0+w_1x_1+w_2x_2=0$ $\implies -1.5+x_1+x_2=0$
- Slice for $w_0 = -1.5$ for the constraints

$$
-w_0 < 0
$$

\n
$$
-w_0 + w_2 < 0
$$

\n
$$
-w_0 + w_1 < 0
$$

\n
$$
-w_0 + w_1 + w_2 > 0
$$

Some datasets are not linearly separable, e.g. XOR

• Recall: binary linear classifiers. Targets $t \in \{0, 1\}$

$$
z = \mathbf{w}^T \mathbf{x} + b
$$

$$
y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}
$$

- How can we find good values for \mathbf{w}, b ?
- \bullet If training set is separable, we can solve for \mathbf{w}, b using Linear Programming (Q: How?).
- If it is not separable, the problem is harder
	- \triangleright data is almost never separable in real life.
- Define loss function, then try to minimize the resulting cost function
	- ▶ Recall: cost is loss averaged (or summed) over the training set
- What loss function is suitable for classification?
- Seemingly obvious loss function: 0-1 loss

$$
\mathcal{L}_{0-1}(y,t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{if } y \neq t \end{cases}
$$

$$
= \mathbb{I}\{y \neq t\}
$$

 \bullet Usually, the cost $\mathcal J$ is the averaged loss over training examples; for 0-1 loss, this is the misclassification rate/error:

$$
\mathcal{J} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{0-1}(y^{(i)}, t^{(i)})
$$

$$
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}\{y^{(i)} \neq t^{(i)}\}.
$$
- Challenge: How to optimize?
- In general, a hard problem (can be NP-hard)
- This is due to the step function (0-1 loss) not being nice (continuous/smooth/convex etc)

Attempt 1: 0-1 Loss

- Minimum of a function will be at its critical points.
- Let's try to find the critical point of 0-1 loss.
- Consider $\mathcal{L}_{0-1}(y, t = 0)$. Recall that $y = y(\mathbf{w}) = \mathbb{I}\{z(w) \geq 0\}$ with $z = \mathbf{w}^T x$. By the chain rule:

$$
\frac{\partial \mathcal{L}_{0-1}(y,0)}{\partial w_j} = \frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}
$$

• But $\partial \mathcal{L}_{0-1}/\partial z$ is zero everywhere it is defined!

- $\triangleright \partial \mathcal{L}_{0-1}/\partial w_i = 0$ means that changing the weights by a very small amount has no effect on the loss.
- ▶ Almost any point has 0 gradient!

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 74 / 106

- Sometimes we can replace the loss function we care about with another that is easier to optimize. This is known as relaxation with a smooth surrogate loss function.
- A problem with \mathcal{L}_{0-1} is that it is defined in terms of final prediction (that is, after thresholding), which inherently involves a discontinuity
- Instead, define loss in terms of value of $\mathbf{w}^T\mathbf{x} + b$ (that is, before thresholding) directly

▶ Redo notation for convenience: $z = \mathbf{w}^T \mathbf{x} + b$

We already know how to fit a linear regression model using the squared error loss. Can we use the same squared error loss instead?

$$
z = \mathbf{w}^{\top} \mathbf{x} + b
$$

$$
\mathcal{L}_{SE}(z, t) = \frac{1}{2}(z - t)^2
$$

- Doesn't matter that the targets are actually binary. Treat them as continuous values.
- For this loss function, it makes sense to make final predictions by thresholding z at $\frac{1}{2}$ (Q: Why?)

Attempt 2: Linear Regression

The problem:

- The loss function penalizes you when you make correct predictions with high confidence!
- If $t = 1$, the loss is larger when $z = 10$ than when $z = 0$.

Attempt 3: Logistic Activation Function with Squared Error

- There is no reason to predict values outside $[0, 1]$. Let's squash y into this interval.
- The logistic function is a kind of sigmoid, or S-shaped function:

$$
\sigma(z) = \frac{1}{1 + e^{-z}}
$$

- $\sigma^{-1}(y) = \log(y/(1-y))$ is called the logit.
- A linear model with a logistic nonlinearity is known as log-linear:

$$
z = \mathbf{w}^{\top} \mathbf{x} + b
$$

$$
y = \sigma(z)
$$

$$
\mathcal{L}_{\text{SE}}(y, t) = \frac{1}{2}(y - t)^2.
$$

• Used in this way, σ is called an activation function.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 78 / 106

Attempt 3: Logistic Activation Function with Squared Error

- When $z \gg 0$, the prediction $\sigma(z) = \frac{1}{1+e^{-z}} \approx 1$, which is the correct prediction.
- When $z \ll 0$, we have $\sigma(z) \approx 0$. This is an incorrect prediction.
- To fix it, we would like to use the gradient to update the weights.

Attempt 3: Logistic Activation Function with Squared Error

- But $\frac{\partial \mathcal{L}}{\partial z} \approx 0$ (check!) $\implies \frac{\partial \mathcal{L}}{\partial w_j} \approx 0 \implies$ derivative w.r.t. w_j is small $\implies w_i$ is like a critical point
- If the prediction is really wrong, you should be far from a critical point and the gradient should show that.
- The gradient of this loss, however, does not indicate that.

Attempt 4: Logistic Regression

- Because $y \in [0, 1]$, we can interpret it as the estimated probability that $t = 1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
- Cross-entropy loss (aka log loss) captures this intuition:

$$
\mathcal{L}_{CE}(y, t) = \begin{cases}\n-\log y & \text{if } t = 1 \\
-\log(1 - y) & \text{if } t = 0 \\
= -t \log y - (1 - t) \log(1 - y)\n\end{cases}\n\begin{cases}\n\frac{3}{8} \\
\frac{3}{8} \\
t = 1\n\end{cases}\n\begin{cases}\nt = 0\n\end{cases}
$$

Logistic Regression

The plot is for target $t = 1$.

Logistic Regression

- Problem: what if $t = 1$ but you're really confident it's a negative example $(z \ll 0)$?
- \bullet If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$
y = \sigma(z) \qquad \Rightarrow y \approx 0
$$

$$
\mathcal{L}_{CE} = -t \log y - (1 - t) \log(1 - y) \qquad \Rightarrow \text{computes } \log 0
$$

• Instead, we combine the activation function and the loss into a single logistic-cross-entropy function.

$$
\mathcal{L}_{\text{LCE}}(z, t) = \mathcal{L}_{\text{CE}}(\sigma(z), t) = t \log(1 + e^{-z}) + (1 - t) \log(1 + e^{z})
$$

Q: Why do we get $log(1 + e^z)$?

• Numerically stable computation:

 $E = t * np.logadderxp(0, -z) + (1-t) * np.logadder(p, z)$

Logistic Regression

Comparison of loss functions (for $t = 1$):

Probabilistic Interpretation of the Logistic Regression

• Suppose that our model arose from the statistical model

$$
p(t=1|\mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^\top x}},
$$

and $p(t = 0|\mathbf{x}; \mathbf{w}) = 1 - p(t = 1|\mathbf{x}; \mathbf{w}) = \frac{e^{-\mathbf{w}^\top x}}{1 + e^{-\mathbf{w}^\top x}}.$

- Consider the dataset $\mathcal{D} = \{(\mathbf{x}^{(1)}, t^{(1)}), \dots, (\mathbf{x}^{(N)}, t^{(N)})\}.$
- The MLE is based on finding **w** that maximizes $Pr(\mathcal{D}|\mathbf{w})$.
- Assume that the inputs are independent. So

$$
p(t^{(1)},..., t^{(N)}|\mathbf{x}^{(1)},..., \mathbf{x}^{(N)}, \mathbf{w}) = \prod_{i=1}^{N} p(t^{(i)}|\mathbf{x}^{(i)}, \mathbf{w}) = L(\mathbf{w}).
$$

Maximizing the likelihood is equivalent to minimizing the negative log-likelihood:

$$
\ell(\mathbf{w}) = -\log L(\mathbf{w}) = -\log \prod_{i=1}^{N} p(t^{(i)} | \mathbf{x}^{(i)}; \mathbf{w}) = -\sum_{i=1}^{N} \log p(t^{(i)} | \mathbf{x}^{(i)}; \mathbf{w})
$$

 $\frac{m}{\sqrt{2}}$ (co.f) $\frac{m}{\sqrt{2}}$ when we would will be with $\frac{m}{\sqrt{2}}$ Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 85 / 106

Probabilistic Interpretation of the Logistic Regression

• So the MLE solves

$$
\min_{\mathbf{w}} - \sum_{i=1}^N \log p(t^{(i)} | \mathbf{x}^{(i)}; \mathbf{w}) = - \sum_{i: t^{(i)} = 1} \log \frac{1}{1 + e^{-\mathbf{w}^\top \mathbf{x}^{(i)}}} - \sum_{i: t^{(i)} = 0} \log \frac{e^{-\mathbf{w}^\top \mathbf{x}^{(i)}}}{1 + e^{-\mathbf{w}^\top \mathbf{x}^{(i)}}}.
$$

- The output of a linear model with logistic activation is $y(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^\top \mathbf{x}}}.$
- We can substitute the terms with $\log \frac{1}{1+e^{-\mathbf{w}^\top \mathbf{x}^{(i)}}}$ with $\log y(\mathbf{x}^{(i)}; \mathbf{w})$ and the terms with $\log \frac{e^{-\mathbf{w}^\top \mathbf{x}^{(i)}}}{1+e^{-\mathbf{w}^\top \mathbf{x}^{(i)}}}$ with $\log(1-y(\mathbf{x}^{(i)};\mathbf{w}))$. • The MLE would be

$$
\begin{aligned} & \min_{\mathbf{w}} - \sum_{i:t^{(i)}=1} \log y(\mathbf{x}^{(i)};\mathbf{w}) - \sum_{i:t^{(i)}=0} \log (1-y(\mathbf{x}^{(i)};\mathbf{w})) = \\ & \min_{\mathbf{w}} - \sum_{i=1}^N t^{(i)} \log y(\mathbf{x}^{(i)};\mathbf{w}) + (1-t^{(i)}) \log (1-y(\mathbf{x}^{(i)};\mathbf{w})). \end{aligned}
$$

- This is the same loss that we got for logistic regression.
- So LR is MLE with a particular probabilistic model.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 86 / 106

- \bullet How do we minimize the cost $\mathcal J$ in this case? No direct solution.
	- \triangleright Taking derivatives of $\mathcal J$ w.r.t. w and setting them to 0 doesn't have an explicit solution.
- We can use the gradient descent instead.

Gradient Descent for Logistic Regression

Back to logistic regression:

$$
\mathcal{L}_{CE}(y, t) = - t \log(y) - (1 - t) \log(1 - y)
$$

$$
y = 1/(1 + e^{-z}) \text{ and } z = \mathbf{w}^{T} \mathbf{x} + b
$$

Therefore

$$
\frac{\partial \mathcal{L}_{\text{CE}}}{\partial w_j} = \frac{\partial \mathcal{L}_{\text{CE}}}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial w_j} = \left(-\frac{t}{y} + \frac{1-t}{1-y} \right) \cdot y(1-y) \cdot x_j
$$

$$
= (y-t)x_j
$$

Exercise: Verify this!

Gradient descent update to find the weights of logistic regression (expressed only for the w_i term):

$$
w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{J}}{\partial w_j}
$$

=
$$
w_j - \frac{\alpha}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)}) x_j^{(i)}
$$

Intro ML (Uoff)
CSC2515-Lec3
88/106

Gradient Descent for Logistic Regression vs Linear Regression

Comparison of gradient descent updates:

• Linear regression (verify!):

$$
\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}
$$

• Logistic regression:

$$
\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}
$$

- Not a coincidence! These are both examples of generalized linear models. But we won't go in further detail.
- Notice $\frac{1}{N}$ in front of sums due to averaged losses. This is why you need smaller learning rate when we optimize the sum of losses $(\alpha' = \alpha/N).$

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 89 / 106

- Classification: predicting a discrete-valued target
	- ▶ Binary classification: predicting a binary-valued target
	- \triangleright Multiclass classification: predicting a discrete(> 2)-valued target
- Examples of multi-class classification
	- \rightarrow predict the value of a handwritten digit
	- ▶ classify e-mails as spam, travel, work, personal
	- ▶ find out whether a picture is a cat, dog, coyote, or fox

Classification tasks with more than two categories:

- Targets form a discrete set $\{1, \ldots, K\}$.
- It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

$$
\mathbf{t} = \underbrace{(0, \dots, 0, 1, 0, \dots, 0)}_{\text{entry } k \text{ is } 1} \in \mathbb{R}^{K}
$$

- \bullet There are D input dimensions and K output dimensions, so we need $K \times D$ weights, which we arrange as a weight matrix **W**.
- We have a K-dimensional vector b of biases too.
- Linear predictions:

$$
z_k = \sum_{j=1}^{D} w_{kj} x_j + b_k \text{ for } k = 1, 2, ..., K
$$

• Vectorized:

$$
\mathbf{z} = \mathbf{W} \mathbf{x} + \mathbf{b}
$$

Multiclass Classification

- Predictions are like probabilities: we want them to satisfy $0 \leq y_k \leq 1$ and $\sum_k y_k = 1$
- A suitable activation function is the softmax function, a multivariable generalization of the logistic function:

$$
y_k = \text{softmax}(z_1, \dots, z_K)_k = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}
$$

- The inputs z_k are called the logits.
- Properties:
	- ▶ Outputs are positive and sum to 1. So they can be interpreted as probabilities.
	- **►** If one of the z_k is much larger than the others, softmax $(z)_k \approx 1$. It approximately behaves like argmax.
	- Exercise: how does the case of $K = 2$ relate to the logistic function?
- Note: sometimes $\sigma(\mathbf{z})$ is used to denote the softmax function; in this class, it will denote the logistic function applied element-wise.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 94 / 106

If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

$$
\mathcal{L}_{\text{CE}}(\mathbf{y}, \mathbf{t}) = -\sum_{k=1}^{K} t_k \log y_k
$$

$$
= -\mathbf{t}^\top (\log \mathbf{y}),
$$

where the log is applied elementwise.

• Just like with logistic regression, we typically combine the softmax and cross-entropy into a softmax-cross-entropy function.

Multiclass Classification

Softmax regression:

$$
\mathbf{z} = \mathbf{W}\mathbf{x} + \mathbf{b}
$$

$$
\mathbf{y} = \text{softmax}(\mathbf{z})
$$

$$
\mathcal{L}_{\text{CE}} = -\mathbf{t}^\top (\log \mathbf{y})
$$

• Gradient descent updates can be derived for each row of W:

$$
\frac{\partial \mathcal{L}_{\text{CE}}}{\partial \mathbf{w}_k} = \frac{\partial \mathcal{L}_{\text{CE}}}{\partial z_k} \cdot \frac{\partial z_k}{\partial \mathbf{w}_k} = (y_k - t_k) \cdot \mathbf{x}
$$

$$
\mathbf{w}_k \leftarrow \mathbf{w}_k - \alpha \frac{1}{N} \sum_{i=1}^N (y_k^{(i)} - t_k^{(i)}) \mathbf{x}^{(i)}
$$

- Similar to linear/logistic regression.
- Verify the update.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 96 / 106

 \bullet So far, the cost function $\mathcal J$ has been the average loss over the training examples:

$$
\mathcal{J}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}^{(i)} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y(\mathbf{x}^{(i)}, \mathbf{w}), t^{(i)}).
$$

• By linearity,

$$
\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}.
$$

- Computing the gradient requires summing over all of the training examples. This is known as batch training.
- Batch training is impractical if you have a large dataset $N \gg 1$ (think about millions of training examples)!

- Stochastic gradient descent (SGD): update the parameters based on the gradient for a single training example,
	- 1. Choose i uniformly at random

2. **w**
$$
\leftarrow
$$
 w $-\alpha \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}$

- Cost of each SGD update is independent of N.
- SGD can make significant progress before even seeing all the data!
- Mathematical justification: if you sample a training example uniformly at random, the stochastic gradient is an unbiased estimate of the batch gradient:

$$
\mathbb{E}\left[\frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}\right] = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}} = \frac{\partial \mathcal{J}}{\partial \mathbf{w}}.
$$

- Problems:
	- ▶ Variance in this estimate may be high
	- \triangleright If we only look at one training example at a time, we can't exploit efficient vectorized operations.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 99 / 106

- Compromise approach: compute the gradients on a randomly chosen medium-sized set of training examples $\mathcal{M} \subset \{1, \ldots, N\},$ called a mini-batch.
- Stochastic gradients computed on larger mini-batches have smaller variance.

$$
\text{Var}\left[\frac{1}{|\mathcal{M}|}\sum_{i\in\mathcal{M}}\frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}_j}\right] = \frac{1}{|\mathcal{M}|^2}\sum_{i\in\mathcal{M}}\text{Var}\left[\frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}_j}\right] = \frac{1}{|\mathcal{M}|}\text{Var}\left[\frac{\partial \mathcal{L}^{(1)}}{\partial \mathbf{w}_j}\right]
$$

- \triangleright Here we used the independence of data points in the first equality, and their having identical distribution in the second equality.
- The mini-batch size $|M|$ is a hyperparameter that needs to be set.
	- ▶ Too large: takes more computation, i.e. takes more memory to store the activations, and longer to compute each gradient update
	- ▶ Too small: can't exploit vectorization; has high variance
	- A reasonable value might be $|\mathcal{M}| = 100$.

• Batch gradient descent moves directly downhill. SGD takes steps in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent

SGD Learning Rate

In stochastic training, the learning rate also influences the fluctuations due to the stochasticity of the gradients.

- Typical strategy:
	- ▶ Use a large learning rate early in training so you can get close to the optimum
	- ▶ Gradually decay the learning rate to reduce the fluctuations

Warning: by reducing the learning rate, you reduce the fluctuations, which can appear to make the loss drop suddenly. But this can come at the expense of long-run performance.

SGD and Non-convex optimization

- Stochastic methods have a chance of escaping from bad minima.
- Gradient descent with small step-size converges to first minimum it finds.

Intro ML (UofT) [CSC2515-Lec3](#page-0-0) 104 / 106

- A modular approach to ML
	- \blacktriangleright choose a model
	- \triangleright choose a loss function suitable for the problem
	- \triangleright formulate an optimization problem
	- \triangleright solve the minimization problem

Conclusion

- Regression with linear models:
	- ▶ Solution method: direct solution or gradient descent
	- ▶ vectorize the algorithm, i.e., use vectors and matrices instead of summations
	- \triangleright make a linear model more powerful using feature mapping (or basis expansion)
	- ▶ improve the generalization by adding a regularizer
	- ▶ Probabilistic Interpretation as MLE with Gaussian noise model
- Classification with linear models:
	- \triangleright 0 1 loss is the difficult to work with
	- ▶ Use of surrogate loss functions such as the cross-entropy loss lead to computationally feasible solutions
	- ▶ Logistic regression as the result of using cross-entropy loss with a linear model going through logistic nonlinearity
	- \triangleright No direct solution, but gradient descent can be used to minimize it
	- ▶ Probabilistic interpretation as MLE
- Gradient Descent and Stochastic Gradient Descent (SGD)