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Modular Approach to ML Algorithm Design
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Modular Approach to ML Algorithm Design

So far, we have talked about procedures for learning.
▶ KNN and decision trees.

For the remainder of this course, we will take a more modular
approach:

▶ choose a model describing the relationships between variables of
interest

▶ define a loss function quantifying how bad the fit to the data is
▶ (possibly) choose a regularizer saying how much we prefer different

candidate models (or explanations of data), before (prior to) seeing
the data

▶ fit the model that minimizes the loss function and satisfy the
constraint/penalty imposed by the regularizer, possibly using an
optimization algorithm

Mixing and matching these modular components gives us a lot of
new ML methods.
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Skills to Learn

Understanding

The modular approach to ML

The role of a model
▶ Linear models
▶ How can we make them more powerful and flexible?

Regularization

Loss function
▶ The relation of loss function and the decision problem we want to

solve
▶ Some loss functions suitable for regression and classification
▶ Maximum Likelihood interpretation

Optimization using Gradient Descent and Stochastic Gradient
Descent
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The Supervised Learning Setup

Recall that in supervised learning:

There is a target t ∈ T (also called response, outcome, output,
class)

There are features x ∈ X (also called inputs or covariates)

The goal is to learn a function f : X → T such that

t ≈ y = f(x),

based on given data D = {(x(i), t(i)) for i = 1, 2, ..., N}.
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Regression with Linear Models

Image credit: xkcd (cropped)
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Linear Regression – Model

Model: In linear regression, we use linear functions of the inputs
x = (x1, . . . , xD) to make predictions y of the target value t:

y =f(x) =
∑
j

wjxj + b

▶ y is the prediction
▶ w is the weights
▶ b is the bias (or intercept) (do not confuse with the bias-variance

tradeoff in the next lecture)

w and b together are the parameters

We hope that our prediction is close to the target: y ≈ t.
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What is Linear? 1 Feature vs. D Features
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If we have only 1 feature:
y = wx+ b where w, x, b ∈ R.
y is linear in x.

If we have D features:
y = w⊤x+ b where w,x ∈ RD,
b ∈ R
y is linear in x.

Relation between the prediction y and inputs x is linear in both cases.

Intro ML (UofT) CSC2515-Lec3 9 / 106



Weight Space vs. Data Space

Recall that
y = f(x) =

∑
j

wjxj + b

Intro ML (UofT) CSC2515-Lec3 10 / 106



Linear Regression

We have a dataset D = {(x(i), t(i))}Ni=1 where,

x(i) = (x
(i)
1 , x

(i)
2 , ..., x

(i)
D )⊤ ∈ RD are the inputs, e.g., age, height,

t(i) ∈ R is the target or response, e.g., income,

predict t(i) with a linear function of x(i):
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t(i) ≈ y(i) = w⊤x(i) + b

Find the “best” line (w, b).

Q: How should we define the best
line?
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Linear Regression – Loss Function

How to quantify the quality of the fit to data?
A loss function L(y, t) defines how bad it is if, for some input x,
the algorithm predicts y, but the target is actually t.
Squared error loss function:

L(y, t) = 1
2(y − t)2

y − t is the residual, and we want to make its magnitude small
The 1

2 factor is just to make the calculations convenient.
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Linear Regression – Loss Function

Cost function: loss function averaged over all training examples

J (w, b) =
1

N

N∑
i=1

L(y(i), t(i))

=
1

2N

N∑
i=1

(
y(i) − t(i)

)2
=

1

2N

N∑
i=1

(
w⊤x(i) + b− t(i)

)2
To find the best fit, we find a model (parameterized by its weights
w and b) that minimizes the cost:

minimize
(w,b)

J (w, b) =
1

N

N∑
i=1

L(y(i), t(i)).

The terminology is not universal. Some might call “loss” pointwise
loss and the “cost function” the empirical loss or average loss.
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Vector Notation

We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

w⊤x(1) + b
...

w⊤x(N) + b

 =

 y(1)

...

y(N)

 = y
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Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

J =
1

2N
∥y − t∥2

Note that sometimes we may use J = 1
2∥y − t∥2, without 1

N
normalizer. That would correspond to the sum of losses, and not
the average loss. That does not matter as the minimizer does not
depend on N .
We can also add a column of 1s to the design matrix, combine the
bias and the weights, and conveniently write

X =

1 [x(1)]⊤

1 [x(2)]⊤

1
...

 ∈ RN×D+1 and w =


b
w1

w2
...

 ∈ RD+1

Then, our predictions reduce to y = Xw.
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Solving the Minimization Problem

We defined a model (linear).

We defined a loss and the cost function to be minimized.

Q: How should we solve this minimization problem?
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Solving the Minimization Problem

Recall from your calculus class: minimum of a differentiable
function (if it exists) occurs at a critical point, i.e., point where
the derivative is zero.

Multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient).

We would like to find a point where the gradient is (close to) zero.
How can we do it?

Sometimes it is possible to directly find the parameters that make
the gradient zero in a closed-form. We call this the direct solution.

We may also use optimization techniques that iteratively get us
closer to the solution. We will get back to this soon.
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Direct Solution

Partial derivatives: derivatives of a multivariate function with
respect to (w.r.t.) one of its arguments.

∂

∂x1
f(x1, x2) = lim

h→0

f(x1 + h, x2)− f(x1, x2)

h

To compute, take the single variable derivatives, pretending the
other arguments are constant.
Example: partial derivatives of the prediction y with respect to
weight wj and bias b:

∂y

∂wj
=

∂

∂wj

∑
j′

wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′

wj′xj′ + b


= 1
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Direct Solution

The derivative of loss: We apply the chain rule: first we take the
derivative of the loss L w.r.t. output y of the model, and then the
derivative of the output y w.r.t. a parameter of the model such as
wj or b:

∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj

∂L
∂b

= y − t

Cost derivatives (average over data points):

∂J
∂wj

=
1

N

N∑
i=1

(y(i) − t(i))x
(i)
j

∂J
∂b

=
1

N

N∑
i=1

(y(i) − t(i))
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Direct Solution

Recall that the output y is a function of the parameters as
y = w⊤x.

The minimum of the cost function must occur at a point where
the partial derivatives are zero, i.e.,

∇wJ = 0⇔ ∂J
∂wj

= 0 (∀j), ∂J
∂b

= 0.

If ∂J /∂wj ̸= 0, you could reduce the cost by changing wj .
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Direct Solution

If we follow this recipe, we get that we have to set the gradient of
J = 1

2N ∥y − t∥2, with y = Xw (bias absorbed in X) equal to zero.
We have

J =
1

2N
(Xw − t)⊤(Xw − t),

so

∇wJ =
1

N
X⊤(Xw − t) = 0⇒ (X⊤X)w = X⊤t.

This is a linear system of equations.

Q: What are the dimensions of each component?

Assuming that X⊤X is invertible, the optimal weights are

wLS = (X⊤X)−1X⊤t.

This solution is also called Ordinary Least Squares (OLS) solution.

At an arbitrary point x, our prediction is y = wLS⊤x.

Q: What happens if X⊤X is not invertible?
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Basis Expansion (Feature Mapping)

The relation between the input and output may not be linear.

We can still use linear regression by mapping the input feature to
another space using basis expansion (or feature mapping)
ψ(x) : RD → Rd and treat the mapped feature (in Rd) as the
input of a linear regression procedure.

Let us see how it works when x ∈ R and we use polynomial feature
mapping.
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Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

y = w0 + w1x+ w2x
2 + ...+ wMxM =

M∑
i=0

wix
i

The feature mapping is ψ(x) = [1, x, x2, ..., xM ]⊤.

We can still use the linear regression framework with least squares
loss to find w since y = ψ(x)⊤w is linear in w0, w1, ....

In general, ψ can be any function. Another example: Fourier map
ψ =
[1, sin(2πx), cos(2πx), sin(4πx), cos(4πx), sin(6πx), cos(6πx), · · · ]⊤.
Q: Other examples?
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Polynomial Feature Mapping with M = 0
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Image credit: Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M = 1
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Image credit: Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M = 3
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Image credit: Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M = 9
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Image credit: Pattern Recognition and Machine Learning, Christopher Bishop.
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Model Complexity and Regularization

Image credit: Pattern Recognition and Machine Learning (Chapter 3), Christopher Bishop.
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Model Complexity and Generalization

Underfitting (M=0): model is too simple — does not fit the data.
Overfitting (M=9): model is too complex — fits perfectly.
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Good model (M=3): Achieves small test error (generalizes well).
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Model Complexity and Generalization
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As M increases, the magnitude of coefficients gets larger.

For M = 9, the coefficients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.

Intro ML (UofT) CSC2515-Lec3 30 / 106



Model Complexity and Generalization
8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w!) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w! obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w! for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w!

0 0.19 0.82 0.31 0.35
w!

1 -1.27 7.99 232.37
w!

2 -25.43 -5321.83
w!

3 17.37 48568.31
w!

4 -231639.30
w!

5 640042.26
w!

6 -1061800.52
w!

7 1042400.18
w!

8 -557682.99
w!

9 125201.43

As the degree M of the polynomial increases

the training errors decreases;

the test error, however, initially decreases, but then increases.
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Model Complexity and Generalization

Training and test error as a function of # training examples and
# parameters:
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Regularization for Controlling the Model Complexity

The degree of the polynomial M controls the complexity of the
model.

The value of M is a hyperparameter for polynomial expansion,
just like K in KNN or the depth of a tree in a decision tree. We
can tune it using a validation set.

Restricting the number of parameters of a model (M here) is a
crude approach to control the complexity of the model.

A better solution: keep the number of parameters of the model
large, but enforce “simpler” solutions within the same space of
parameters.

This is done through regularization or penalization.
▶ Regularizer (or penalty): a function that quantifies how much we

prefer one hypothesis vs. another, prior to seeing the data.

Q: How?!
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ℓ2 (or L
2) Regularization

We can encourage the weights to be small by choosing the ℓ2 (or L2) of
the weights as our regularizer or penalty:

R(w) = 1
2∥w∥

2
2 =

1

2

∑
j

w2
j .

▶ Note: To be precise, we are regularizing the squared ℓ2 norm.

The regularized cost function makes a tradeoff between fit to the data
and the norm of the weights:

Jreg(w) = J (w) + λR(w) = J (w) +
λ

2

∑
j

w2
j .
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ℓ2 (or L
2) Regularization

The regularized cost function:

Jreg(w) = J (w) + λR(w) = J (w) +
λ

2

∑
j

w2
j .

The basic idea is that “simpler” functions have weights w with smaller
ℓ2-norm and we prefer them to functions with larger ℓ2-norms.

▶ Intuition: Large weights makes the function f have more abrupt
changes as a function of the input x; it will be less smooth.

If you fit training data poorly, J is large. If the fitted weights have high
values, R is large.

Large λ penalizes weight values more.

Here, λ is a hyperparameter that we can tune with a validation set.
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ℓ2 Regularized Least Squares: Ridge Regression

For the least squares problem, we have J (w) = 1
2N ∥Xw − t∥2.

When λ > 0 (with regularization), regularized cost gives

wRidge
λ = argmin

w
Jreg(w) = argmin

w

1

2N
∥Xw − t∥22 +

λ

2
∥w∥22

=(XTX+ λNI)−1XT t.

The case of λ = 0 (no regularization) reduces to the least squares
solution!

Q: What happens when λ→∞?

Note that it is also common to formulate this problem as
argminw ∥Xw − t∥22 + λ

2 ∥w∥
2
2 in which case the solution is

wRidge
λ = (X⊤X+ λI)−1X⊤t.

Intro ML (UofT) CSC2515-Lec3 36 / 106



Lasso and the ℓ1 Regularization

The ℓ1 norm, or sum of absolute values, is another regularizer:

R(w) = ∥w∥1 =
∑
j

|wj |.

The Lasso (Least Absolute Shrinkage and Selection Operator) is

min
w
∥Xw − t∥22 + λ ∥w∥1 .

It can be shown that Lasso encourages weights to be exactly zero.
▶ Q: When is this helpful?
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Ridge vs. Lasso – Geometric Viewpoint

We presented regularization as a penalty on the weights, in which
we solve

min
w
J (w) + λR(w)

We can also write an equivalent form as a constraint optimization:

argmin
w

J (w)

s.t. R(w) ≤ µ,

for a corresponding value of µ.

The Ridge regression and the Lasso can then be written as

argmin
w

∥Xw − t∥22

s.t. ∥w∥p ≤ µ (Lasso: p = 1;Ridge: p = 2)
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Ridge vs. Lasso – Geometric Viewpoint

The set {w : ∥Xw − t∥22 ≤ ε} defines ellipsoids of ε cost in the weights
space.

The set {w : ∥w∥p ≤ µ} defines the constraint on weights defined by the
regularizer.

The solution would be the smallest ε for which these two sets intersects.

For p = 1, the diamond-shaped constraint set has corners. When the
intersection happens at a corner, some of the weights are zero.

For p = 2, the disk-shaped constraint set does not have corners. It does
not induce any zero weights.
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Probabilistic Interpretation of the Squared Error

For the least squares: we minimize the sum of the squares of the errors
between the predictions for each data point x(i) and the corresponding
target values t(i), i.e.,

minimize
(w,w0)

n∑
i=1

(w⊤x(i) + b− t(i))2

t ≈ x⊤w + b, (w, b) ∈ RD × R
We measure the quality of the fit using the
squared error loss. Why?

Even though the squared error loss is
intuitive, we did not justify it.

We provide a probabilistic perspective here.

There are other justifications too; we get to
them in the Bias-Variance decomposition
lecture.

Intro ML (UofT) CSC2515-Lec3 40 / 106



Probabilistic Interpretation of the Squared Error

Suppose that our model arose from a statistical model (b=0 for
simplicity):

y(i) = w⊤x(i) + ϵ(i),

where ϵ(i) ∼ N (0, σ2) is independent of the input x(i).

Thus, y(i)|x(i) ∼ p(y|x(i),w) = N (w⊤x(i), σ2).
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Probabilistic Interpretation of the Squared Error:
Maximum Likelihood Estimation

Suppose that the input data {x(1),x(2), . . . ,x(N)} are given and
the outputs are independently drawn from

t(i) ∼ p(y|x(i),w),

with an unknown parameter w. So the dataset is
D = {(x(1), t(1)), . . . , (x(N), t(N))}.
The likelihood function is Pr(D|w).
The maximum likelihood estimation (MLE) is based on the
“principle” suggesting that we have to find a parameter ŵ that
maximizes the likelihood, i.e.,

ŵ← argmax
w

Pr(D|w).

Maximum likelihood estimation: after observing the data samples
(x(i), t(i)) for i = 1, 2, ..., N , we should choose w that maximizes the
likelihood.
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Probabilistic Interpretation of the Squared Error:
Maximum Likelihood Estimation

For independent samples, the likelihood function of samples D is the product
of their likelihoods

p
(
t(1), t(2), . . . , t(N)|x(1),x(2), . . . ,x(N),w

)
=

N∏
i=1

p(t(i)|x(i),w) = L(w).

Product of N terms is not easy to minimize.

Taking log reduces it to a sum. Two objectives are equivalent since log is
strictly increasing.

Maximizing the likelihood is equivalent to minimizing the negative
log-likelihood:

ℓ(w) = − logL(w) = − log
N∏
i=1

p(t(i)|x(i);w) = −
n∑

i=1

log p(t(i)|x(i);w)
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Probabilistic Interpretation of the Squared Error:
Maximum Likelihood Estimation

Maximum Likelihood Estimator (MLE)

After observing z(i) = (x(i), t(i)) for i = 1, ..., N independent and identically
distributed (i.i.d.) samples from p(z,w), MLE is

wMLE = argmin
w

l(w) = −
N∑
i=1

log p(t(i)|x(i);w).
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Probabilistic Interpretation of the Squared Error: From
MLE to Squared Error

Suppose that our model arose from a statistical model:

y(i) = w⊤x(i) + ϵ(i)

where ϵ(i) ∼ N (0, σ2) is independent of anything else.

p(y(i)|x(i),w) = 1√
2πσ2

exp
{
− 1

2σ2 (y
(i) −w⊤x(i))2

}
log p(y(i)|x(i),w) = − 1

2σ2 (y
(i) −w⊤x(i))2 − log(

√
2πσ2)

The MLE solution is

wMLE = argmin
w

L(w) = 1
2σ2

N∑
i=1

(t(i) −w⊤x(i))2 + C.

As C and σ do not depend on w, they do not contribute to the
minimization.

wMLE = wLS when we work with Gaussian densities.
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Probabilistic Interpretation of the Squared Error: From
MLE to Squared Error

Suppose that our model arose from a statistical model:

y(i) = w⊤x(i) + ϵ(i)

where ϵ(i) comes from the Laplace distribution, that is, the
distribution of ϵ(i) has density

1

2b
exp

(
|y(i) −w⊤x(i)|

2b

)
.

Q: What is the loss in the MLE?
▶ Choice 1: 1

N

∑N
i=1 |t(i) − w⊤x(i)|1/2

▶ Choice 2: 1
N

∑N
i=1(t

(i) − w⊤x(i))

▶ Choice 3: 1
N

∑N
i=1 |t(i) − w⊤x(i)|

▶ Choice 4: 1
N

∣∣∣∑N
i=1(t

(i) − w⊤x(i))
∣∣∣

Q: Can you think of an application area with non-Gaussian
probabilistic model?
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Gradient Descent for Optimization
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Gradient Descent

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g., all zeros)
and repeatedly adjust them in the direction of steepest descent.
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Gradient Descent

Observe:
▶ if ∂J /∂wj > 0, then increasing wj increases J .
▶ if ∂J /∂wj < 0, then increasing wj decreases J .

The following update decreases the cost function:

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y(i) − t(i))x
(i)
j

α is the learning rate or step size. The larger it is, the faster w
changes.

▶ We’ll see later how to tune the learning rate, but values are
typically small, e.g., 0.1 or 0.001.
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Gradient Descent

The method gets its name from the gradient:

∇wJ =
∂J
∂w

=


∂J
∂w1
...

∂J
∂wD


▶ This is the direction of fastest increase in J . (Q: Why?)

Update rule in vector form:

w← w − α
∂J
∂w

= w − α

N

N∑
i=1

(y(i) − t(i))x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.

Observe that once it converges, we get a critical point: ∂J
∂w = 0.
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Gradient Descent for Linear regression

Even for linear regression, where there is a direct solution, we
sometimes need to use GD.

Why gradient descent, if we can find the optimum directly?
▶ GD can be applied to a much broader set of models
▶ GD can be easier to implement than direct solutions
▶ For regression in high-dimensional spaces, GD is more efficient than

direct solution
▶ Linear regression solution: (XTX)−1XT t
▶ matrix inversion is an O(D3) algorithm
▶ each GD update costs O(ND)
▶ Huge difference if D ≫ 1
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Gradient Descent under the ℓ2 Regularization

Recall the gradient descent update:

w← w − α
∂J
∂w

The gradient descent update of the regularized cost J +λR has an
interesting interpretation as weight decay (for the ℓ2 regularizer):

w← w − α

(
∂J
∂w

+ λ
∂R
∂w

)
= w − α

(
∂J
∂w

+ λw

)
= (1− αλ)w − α

∂J
∂w
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Learning Rate (Step Size)

In gradient descent, the learning rate α is a hyperparameter we
need to tune. If we do not choose it right, the procedure may have
undesirable convergence properties:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance, i.e., try
0.1, 0.03, 0.01, . . ..
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Training Curves

To diagnose optimization problems, it is useful to look at training
curves: plot the training cost as a function of iteration.
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Brief Matrix and Vector Calculus

For a function f : Rp → R, ∇f(z) denotes the gradient at z which
points in the direction of the greatest rate of increase.

∇f(x) ∈ Rp is a vector with [∇f(x)]i = ∂
∂xi

f(x).

∇2f(x) ∈ Rp×p is a matrix with [∇2f(x)]ij =
∂2

∂xi∂xj
f(x)

At any minimum of a function f , we have ∇f(w) = 0,
∇2f(w) ⪰ 0.

Consider the problem minimize
w

ℓ(w) = 1
2∥y −Xw∥22,

∇ℓ(w) = X⊤(Xw − y) = 0 =⇒ ŵ = (X⊤X)−1X⊤y (assuming
X⊤X is invertible)
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Vectorization

Computing the prediction using a for loop:

For-loops in Python are slow, so we vectorize algorithms by
expressing them in terms of vectors and matrices.

w = (w1, . . . , wD)
T x = (x1, . . . , xD)

T

y = wTx+ b

This is simpler and much faster: y = np.dot(w,x) + b
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Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!

Vectorized code is much faster
▶ Cut down on Python interpreter overhead
▶ Use highly optimized linear algebra libraries
▶ Matrix multiplication is very fast on a Graphics Processing Unit

(GPU)
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Classification with Linear Models
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Classification Problem

Classification: predicting a discrete-valued target
▶ Binary classification: predicting a binary-valued target

Examples
▶ predict whether a patient has a disease, given the presence or

absence of various symptoms
▶ classify e-mails as spam or non-spam
▶ predict whether a financial transaction is fraudulent
▶ find out whether a picture is a cat or dog
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Binary Linear Classification

classification: predict a discrete-valued target
binary: predict a binary target t ∈ {0, 1}

▶ Training examples with t = 1 are called positive examples, and
training examples with t = 0 are called negative examples.

▶ t ∈ {0, 1} or t ∈ {−1,+1} is for computational convenience.

linear: model is a linear function of x, followed by a threshold r:

z = wTx+ b

y =

{
1 if z ≥ r
0 if z < r
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Some Simplifications

Eliminating the threshold

We can assume without loss of generality (w.l.o.g.) that the
threshold is r = 0:

wTx+ b ≥ r ⇐⇒ wTx+ b− r︸ ︷︷ ︸
≜w0

≥ 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The
weight w0 = b is equivalent to a bias (same as linear regression)

Simplified model

z = wTx

y =

{
1 if z ≥ 0
0 if z < 0
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Examples

Let us consider some simple examples to examine the properties of
our model

Forget about generalization and suppose we just want to learn
Boolean functions
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Examples

NOT

x0 x1 t

1 0 1
1 1 0

This is our “training set”

What conditions are needed on w0, w1 to classify all examples?
▶ When x1 = 0, need: z = w0x0 + w1x1 > 0 ⇐⇒ w0 > 0
▶ When x1 = 1, need: z = w0x0 + w1x1 < 0 ⇐⇒ w0 + w1 < 0

Example solution: w0 = 1, w1 = −2
Is this the only solution?
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Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

z = w0x0 + w1x1 + w2x2

need: w0 < 0

need: w0 + w2 < 0

need: w0 + w1 < 0

need: w0 + w1 + w2 > 0

Example solution: w0 = −1.5, w1 = 1, w2 = 1
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Geometric Picture

Input Space, or Data Space for NOT example

x0 x1 t

1 0 1
1 1 0

This is the input space. Training examples are points in that
space.
Any weight (hypothesis) w defines half-spaces

▶ H+ = {x : wTx ≥ 0}
▶ H− = {x : wTx < 0}

in the input space.
▶ The boundaries of these half-spaces pass through the origin (why?)

The boundary is the decision boundary: {x : wTx = 0}
▶ In 2-D, it is a line, but think of it as a hyperplane in general.

If the training examples can be perfectly separated by a linear
decision rule, we say that the data is linearly separable.
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Geometric Picture

Weight Space

w0 > 0

w0 + w1 < 0

The left figure is the input space; the right figure is the weight
(hypothesis) space.

To correctly classify each training example x, weights w should
belong to a particular half-space in the weight space such that
wTx > 0 if t = 1 (and wTx < 0 if t = 0).
For NOT example:

▶ x0 = 1, x1 = 0, t = 1 =⇒ (w0, w1) ∈ {w : w0 > 0}
▶ x0 = 1, x1 = 1, t = 0 =⇒ (w0, w1) ∈ {w : w0 + w1 < 0}

The region satisfying all the constraints is the feasible region; if
this region is nonempty, the problem is feasible, otherwise it is
infeasible.
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Geometric Picture

The AND example requires three dimensions, including the dummy one.

To visualize data space and weight space for a 3-D example, we can look
at a 2-D slice.

The visualizations are similar.

▶ Feasible set will always have a corner at the origin.
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Geometric Picture

Visualizations of the AND example

Data Space

- Slice for x0 = 1
- example sol: w0=−1.5, w1=1, w2=1
- decision boundary:
w0x0+w1x1+w2x2=0
=⇒ −1.5+x1+x2=0

Weight Space

- Slice for w0 = −1.5 for the
constraints
- w0 < 0
- w0 + w2 < 0
- w0 + w1 < 0
- w0 + w1 + w2 > 0
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Geometric Picture

Some datasets are not linearly separable, e.g. XOR
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Finding the Weight Vector

Recall: binary linear classifiers. Targets t ∈ {0, 1}

z = wTx+ b

y =

{
1 if z ≥ 0
0 if z < 0

How can we find good values for w, b?

If training set is separable, we can solve for w, b using Linear
Programming (Q: How?).

If it is not separable, the problem is harder
▶ data is almost never separable in real life.

Intro ML (UofT) CSC2515-Lec3 70 / 106



Loss Functions for Classification

Define loss function, then try to minimize the resulting cost
function

▶ Recall: cost is loss averaged (or summed) over the training set

What loss function is suitable for classification?

Seemingly obvious loss function: 0-1 loss

L0−1(y, t) =

{
0 if y = t
1 if y ̸= t

= I{y ̸= t}
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Attempt 1: 0-1 Loss

Usually, the cost J is the averaged loss over training examples; for
0-1 loss, this is the misclassification rate/error:

J =
1

N

N∑
i=1

L0−1(y
(i), t(i))

=
1

N

N∑
i=1

I{y(i) ̸= t(i)}.
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Attempt 1: 0-1 Loss

Challenge: How to optimize?

In general, a hard problem (can be NP-hard)

This is due to the step function (0-1 loss) not being nice
(continuous/smooth/convex etc)

Intro ML (UofT) CSC2515-Lec3 73 / 106



Attempt 1: 0-1 Loss

Minimum of a function will be at its critical points.

Let’s try to find the critical point of 0-1 loss.

Consider L0−1(y, t = 0). Recall that y = y(w) = I{z(w) ≥ 0} with
z = wTx. By the chain rule:

∂L0−1(y, 0)

∂wj
=

∂L0−1

∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it is defined!

▶ ∂L0−1/∂wj = 0 means that changing the weights by a very small
amount has no effect on the loss.

▶ Almost any point has 0 gradient!
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Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with
another that is easier to optimize. This is known as relaxation
with a smooth surrogate loss function.

A problem with L0−1 is that it is defined in terms of final
prediction (that is, after thresholding), which inherently involves a
discontinuity

Instead, define loss in terms of value of wTx+ b (that is, before
thresholding) directly

▶ Redo notation for convenience: z = wTx+ b
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Attempt 2: Linear Regression

We already know how to fit a linear regression model using the
squared error loss. Can we use the same squared error loss instead?

z = w⊤x+ b

LSE(z, t) =
1

2
(z − t)2

Doesn’t matter that the targets are actually binary. Treat them as
continuous values.

For this loss function, it makes sense to make final predictions by
thresholding z at 1

2 (Q: Why?)

Intro ML (UofT) CSC2515-Lec3 76 / 106



Attempt 2: Linear Regression

The problem:

The loss function penalizes you when you make correct predictions
with high confidence!

If t = 1, the loss is larger when z = 10 than when z = 0.
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Attempt 3: Logistic Activation Function with Squared
Error

There is no reason to predict values outside [0, 1]. Let’s squash y
into this interval.

The logistic function is a kind of sigmoid, or
S-shaped function:

σ(z) =
1

1 + e−z

σ−1(y) = log(y/(1− y)) is called the logit.
A linear model with a logistic nonlinearity is known as log-linear:

z = w⊤x+ b

y = σ(z)

LSE(y, t) =
1

2
(y − t)2.

Used in this way, σ is called an activation function.
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Attempt 3: Logistic Activation Function with Squared
Error

∂L
∂wj

=
∂L
∂z

∂z

∂wj

Plot of LSE as a function of z with t =
1.

When z ≫ 0, the prediction σ(z) = 1
1+e−z ≈ 1, which is the correct

prediction.

When z ≪ 0, we have σ(z) ≈ 0. This is an incorrect prediction.

To fix it, we would like to use the gradient to update the weights.
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Attempt 3: Logistic Activation Function with Squared
Error

∂L
∂wj

=
∂L
∂z

∂z

∂wj

Plot of LSE as a function of z with t =
1.

But ∂L
∂z ≈ 0 (check!) =⇒ ∂L

∂wj
≈ 0 =⇒ derivative w.r.t. wj is

small =⇒ wj is like a critical point

If the prediction is really wrong, you should be far from a critical
point and the gradient should show that.

The gradient of this loss, however, does not indicate that.
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Attempt 4: Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were
much more wrong than the ones who were only 90% confident.

Cross-entropy loss (aka log loss) captures this intuition:

LCE(y, t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)
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Logistic Regression

z = w⊤x+ b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

The plot is for target t = 1.
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Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z ≪ 0)?

If y is small enough, it may be numerically zero. This can cause
very subtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a
single logistic-cross-entropy function.

LLCE(z, t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Q: Why do we get log(1 + ez)?

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Logistic Regression

Comparison of loss functions (for t = 1):
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Probabilistic Interpretation of the Logistic Regression

Suppose that our model arose from the statistical model

p(t = 1|x;w) =
1

1 + e−w⊤x
,

and p(t = 0|x;w) = 1− p(t = 1|x;w) = e−w⊤x

1+e−w⊤x
.

Consider the dataset D = {(x(1), t(1)), . . . , (x(N), t(N))}.
The MLE is based on finding w that maximizes Pr(D|w).
Assume that the inputs are independent. So

p(t(1), . . . , t(N)|x(1), . . . ,x(N),w) =

N∏
i=1

p(t(i)|x(i),w) = L(w).

Maximizing the likelihood is equivalent to minimizing the negative
log-likelihood:

ℓ(w) = − logL(w) = − log

N∏
i=1

p(t(i)|x(i);w) = −
N∑
i=1

log p(t(i)|x(i);w)

wMLE = wLS when we work with Gaussian densities.
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Probabilistic Interpretation of the Logistic Regression

So the MLE solves

min
w

−
N∑
i=1

log p(t(i)|x(i);w) = −
∑

i:t(i)=1

log
1

1 + e−w⊤x(i)
−

∑
i:t(i)=0

log
e−w⊤x(i)

1 + e−w⊤x(i)
.

The output of a linear model with logistic activation is
y(x;w) = σ(x;w) = 1

1+e−w⊤x
.

We can substitute the terms with log 1

1+e−w⊤x(i)
with log y(x(i);w)

and the terms with log e−w⊤x(i)

1+e−w⊤x(i)
with log(1− y(x(i);w)).

The MLE would be

min
w
−
∑

i:t(i)=1

log y(x(i);w)−
∑

i:t(i)=0

log(1− y(x(i);w)) =

min
w
−

N∑
i=1

t(i) log y(x(i);w) + (1− t(i)) log(1− y(x(i);w)).

This is the same loss that we got for logistic regression.

So LR is MLE with a particular probabilistic model.
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Gradient Descent

How do we minimize the cost J in this case? No direct solution.
▶ Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have

an explicit solution.

We can use the gradient descent instead.
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Gradient Descent for Logistic Regression

Back to logistic regression:

LCE(y, t) =− t log(y)− (1− t) log(1− y)

y =1/(1 + e−z) and z = wTx+ b

Therefore

∂LCE

∂wj
=

∂LCE

∂y
· ∂y
∂z
· ∂z

∂wj
=

(
− t

y
+

1− t

1− y

)
· y(1− y) · xj

=(y − t)xj

Exercise: Verify this!
Gradient descent update to find the weights of logistic regression
(expressed only for the wj term):

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y(i) − t(i))x
(i)
j
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Gradient Descent for Logistic Regression vs Linear
Regression

Comparison of gradient descent updates:

Linear regression (verify!):

w← w − α

N

N∑
i=1

(y(i) − t(i))x(i)

Logistic regression:

w← w − α

N

N∑
i=1

(y(i) − t(i))x(i)

Not a coincidence! These are both examples of generalized linear
models. But we won’t go in further detail.

Notice 1
N in front of sums due to averaged losses. This is why you

need smaller learning rate when we optimize the sum of losses
(α′ = α/N).
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Multiclass Classification

Classification: predicting a discrete-valued target
▶ Binary classification: predicting a binary-valued target
▶ Multiclass classification: predicting a discrete(> 2)-valued target

Examples of multi-class classification
▶ predict the value of a handwritten digit
▶ classify e-mails as spam, travel, work, personal
▶ find out whether a picture is a cat, dog, coyote, or fox
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Multiclass Classification

Classification tasks with more than two categories:
It is very hard to say what makes a 2         Some examples from an earlier version of the net 
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Multiclass Classification

Targets form a discrete set {1, . . . ,K}.
It’s often more convenient to represent them as one-hot vectors, or
a one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

∈ RK

Intro ML (UofT) CSC2515-Lec3 92 / 106



Multiclass Classification

There are D input dimensions and K output dimensions, so we
need K ×D weights, which we arrange as a weight matrix W.

We have a K-dimensional vector b of biases too.

Linear predictions:

zk =

D∑
j=1

wkjxj + bk for k = 1, 2, ...,K

Vectorized:
z = Wx+ b
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Multiclass Classification

Predictions are like probabilities: we want them to satisfy
0 ≤ yk ≤ 1 and

∑
k yk = 1

A suitable activation function is the softmax function, a
multivariable generalization of the logistic function:

yk = softmax(z1, . . . , zK)k =
ezk∑
k′ e

zk′

The inputs zk are called the logits.
Properties:

▶ Outputs are positive and sum to 1. So they can be interpreted as
probabilities.

▶ If one of the zk is much larger than the others, softmax(z)k ≈ 1. It
approximately behaves like argmax.

▶ Exercise: how does the case of K = 2 relate to the logistic
function?

Note: sometimes σ(z) is used to denote the softmax function; in
this class, it will denote the logistic function applied element-wise.
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Multiclass Classification

If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

LCE(y, t) = −
K∑
k=1

tk log yk

= −t⊤(logy),

where the log is applied elementwise.

Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.
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Multiclass Classification

Softmax regression:

z = Wx+ b

y = softmax(z)

LCE = −t⊤(logy)

Gradient descent updates can be derived for each row of W:

∂LCE

∂wk
=

∂LCE

∂zk
· ∂zk
∂wk

= (yk − tk) · x

wk ← wk − α
1

N

N∑
i=1

(y
(i)
k − t

(i)
k )x(i)

Similar to linear/logistic regression.

Verify the update.
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Stochastic Gradient Descent
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Stochastic Gradient Descent

So far, the cost function J has been the average loss over the
training examples:

J (w) =
1

N

N∑
i=1

L(i) = 1

N

N∑
i=1

L(y(x(i),w), t(i)).

By linearity,

∂J
∂w

=
1

N

N∑
i=1

∂L(i)

∂w
.

Computing the gradient requires summing over all of the training
examples. This is known as batch training.

Batch training is impractical if you have a large dataset N ≫ 1
(think about millions of training examples)!
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Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,

1. Choose i uniformly at random

2. w← w − α∂L(i)

∂w

Cost of each SGD update is independent of N .

SGD can make significant progress before even seeing all the data!

Mathematical justification: if you sample a training example uniformly
at random, the stochastic gradient is an unbiased estimate of the batch
gradient:

E
[
∂L(i)

∂w

]
=

1

N

N∑
i=1

∂L(i)

∂w
=

∂J
∂w

.

Problems:

▶ Variance in this estimate may be high
▶ If we only look at one training example at a time, we can’t exploit

efficient vectorized operations.
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Stochastic Gradient Descent

Compromise approach: compute the gradients on a randomly
chosen medium-sized set of training examplesM⊂ {1, . . . , N},
called a mini-batch.

Stochastic gradients computed on larger mini-batches have smaller
variance.

Var

[
1

|M|
∑
i∈M

∂L(i)

∂wj

]
=

1

|M|2
∑
i∈M

Var

[
∂L(i)

∂wj

]
=

1

|M|
Var

[
∂L(1)

∂wj

]

▶ Here we used the independence of data points in the first equality,
and their having identical distribution in the second equality.

The mini-batch size |M| is a hyperparameter that needs to be set.
▶ Too large: takes more computation, i.e. takes more memory to store

the activations, and longer to compute each gradient update
▶ Too small: can’t exploit vectorization; has high variance
▶ A reasonable value might be |M| = 100.
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Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps
in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
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SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:
▶ Use a large learning rate early in training so you can get close to

the optimum
▶ Gradually decay the learning rate to reduce the fluctuations
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SGD Learning Rate

Warning: by reducing the learning rate, you reduce the
fluctuations, which can appear to make the loss drop suddenly.
But this can come at the expense of long-run performance.
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SGD and Non-convex optimization

Local minimum

Global minimum

�3
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Stochastic Gradient descent
updates

Stochastic methods have a chance of escaping from bad minima.

Gradient descent with small step-size converges to first minimum
it finds.
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Conclusion

A modular approach to ML
▶ choose a model
▶ choose a loss function suitable for the problem
▶ formulate an optimization problem
▶ solve the minimization problem
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Conclusion

Regression with linear models:
▶ Solution method: direct solution or gradient descent
▶ vectorize the algorithm, i.e., use vectors and matrices instead of

summations
▶ make a linear model more powerful using feature mapping (or basis

expansion)
▶ improve the generalization by adding a regularizer
▶ Probabilistic Interpretation as MLE with Gaussian noise model

Classification with linear models:
▶ 0− 1 loss is the difficult to work with
▶ Use of surrogate loss functions such as the cross-entropy loss lead to

computationally feasible solutions
▶ Logistic regression as the result of using cross-entropy loss with a

linear model going through logistic nonlinearity
▶ No direct solution, but gradient descent can be used to minimize it
▶ Probabilistic interpretation as MLE

Gradient Descent and Stochastic Gradient Descent (SGD)
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