CSC 2515: Introduction to Machine Learning

Lecture 5: Neural Networks

Rahul G. Krishnan?

University of Toronto and Vector Institute

1
Credit for slides goes to many members of the ML Group at the U of T, and beyond, including
(recent past): Amir-Massoud Farahmand, Roger Grosse, Murat Erdogdu, Richard Zemel, Juan Felipe
Carrasquilla, Emad Andrews, and myself.

Intro ML (UofT) OSC2515-Lecs 1/48

Table of Contents

@ From Brain to Artificial Neural Networks

© Multilayer Perceptrons (Feedforward Neural Networks)
o Expressive Power

© Backpropagation

Intro ML (UofT) CSC2515-Lech

2/48

Today

predicted
output
z Mo'del y
. (Predictor)
input L(y.1)
Loss: How bad their

A t
; target difference (error) is?

processing on input

i@
| e Decision tree: f(z;w) =", w;l{z € R;}
\
*~-»e Lincar model: flasw)=2Tw

e Linear model in feature space: f(z;w) = ¢(x) w

@ We have considered a modular framework to ML.

e We considered several loss functions for regression and
classifications

o We have “mostly” focused on linear models.

Intro ML (UofT) CSC2515-Lech

3/48

Today

predicted
. Model °”2’I’”t .
o (Predictor)
input L(y, t)

t JLoss: How bad their
target difference (error) is?

processing on input
e .
S o Decision tree: f(z;w) =3"_, w;l{z € R;}
\
*~<»e Lincar model: f(a;w) =27 w

o Linear model in feature space: f(z;w) = ¢(z) w

Feature mapping can make linear models much more powerful.

Coming up with feature mapping can be challenging.

e Kernel-based approach is a way to partially address it.

(Artificial) Neural Networks (NN) is a general approach to
represent complex models.

Intro ML (UofT) CSC2515-Lech 4/48

Today

predicted
output
s MOfieI ¥ o
. (Predictor)
input L(y,t)
Loss: How bad their

A t
: target difference (error) is?

processing on input
fla)
s o Decision tree: f(z;w) =31, wil{z € R;}
\
“~<me Lincar model: f(a;w) = w

o Linear model in feature space: f(z;w) = ¢(z) w

@ The predictor can be seen as a computer program that processes
the input in order to generate the output. Some programs are
simpler, some are more complex.

e Neural networks are one general and flexible way to specify a
computer program.

o Different NN architectures correspond to different ways of
specifying the overal architecture of the program.

Intro ML (UofT) CSC2515-Lech 5/48

Today

Skills to Learn
@ Multi-layer feedforward neural networks

e Backpropagation for training NN

Intro ML (UofT) CSC2515-Lech

6 /48

Neural Networks

Inspiration: The Brain

o Our brain has ~ 10! neurons, each of which communicates (is
connected) to ~ 10* other neurons

impulses carried
toward cell body
branches
of axon

dendrites

axon

nucleus terminals

impulses carried

away from cell body
cell body

Figure: The basic computational unit of the brain: Neuron

[Image credit: http://cs231n.github.io/neural-networks-1/]

Intro ML (UofT) CSC2515-Lech 8/48

http://cs231n.github.io/neural-networks-1/

Inspiration: The Brain

star-nosed
oty otled - hamstr rnes rat

> e m> & a D>

0176g 0347g 04169 1020g 0802g 18029 0999¢g
36M 52M 7iM 90M 131M

eastern mole

200M 204M

guinea pig marmoset agoutl galago owl monkey

capybara squirrel monkey.

macaque monkey

1508 g
86000 M

Figure: Brain mass and total number of neurons for the mammalian species.

[Image credit: Suzana Herculano-Houzel, The Human Brain in Numbers: A Linearly
Scaled-up Primate Brain, 2009.]

Intro ML (UofT) CSC2515-Lech 9/48

Inspiration: The Brain

A neuron receives input signals from other neurons and accumulate
voltage. If the accumulated voltage passes a threshold, it fires spiking

responses.

Action
potential
+40
s
£ P
0
g [/
8 © 3
o Il 3
> g)
g =
3
Threshold ~ Failed
35 initiations
-70 T___ Resting state
stimulus Refractory
0 1 2 3 7 5

Time (ms)

[Image credit: https://en.wikipedia.org/wiki/Action_potential]

Intro ML (UofT)

CSC2515-Lech 10 /48

https://en.wikipedia.org/wiki/Action_potential

Inspiration: The Brain

e For (artificial) neural nets, we use a much simpler model neuron,

or unit:
Yy f i'th weight
output output b"""s
|
w1 weights v v Z
w2 w
y=g|b+ E TiW;
inputs T i \
I i) T3

nonlinearity i'th input

e Compare with logistic activation function used in LR:
y=o(w'x+b)

e Bv throwine tosether lots of these incrediblv simnlistic nenron- hkp
Intro ML (UofT) CSC2515-Lech

/48

Multilayer Perceptrons (Feedforward Neural Networks)

@ We can connect lots of
units together into a
directed acyclic graph. anf,lf;tpu'
e Typically, units are output layer
lgrouPed together mto second hidden layer
ayers.
o This gives a

feed-forward neural ahidden

first hidden layer

network. input layer

a connection

o That is in contrast to depth
recurrent neural
networks, which have
cycles.

an input
unit

Intro ML (UofT) CSC2515-Lech 12 /48

Multilayer Perceptrons (Feedforward Neural Networks)

e Each hidden layer ¢ connects N;_; input units to /V; output units.
@ In the simplest case, all input units are connected to all output
units. We call this a fully connected layer. We will consider other
layer types later.
» The inputs and outputs for a layer are distinct from the inputs and
outputs to the network.

Intro ML (UofT) CSC2515-Lech 13 /48

Multilayer Perceptrons (Feedforward Neural Networks)

e If we need to compute M[= N;] outputs from N = [N;_1] inputs,
we can do so in parallel using matrix multiplication. This means
we will be using a M x N weight matrix.

@ The output units are a function of the input units:

y = f(x) = 6 (Wx+b)

e A multilayer network consisting of fully connected layers is called
a multilayer perceptron. Despite the name, it has nothing to do
with the Perceptron algorithm.

Intro ML (UofT) CSC2515-Lech 14 /48

Activation Functions

Some activation functions:

Rectified Linear

Identity Unit Soft ReLU
(ReLU)
y=z y=logl+e?
y = max(0, z)

Intro ML (UofT) CSC2515-Lech 15 /48

Activation Functions

Some activation functions:

Hard Threshold Logistic
1 ifz>0 B 1
Y=l 0 iftz<o Y= 11—

Intro ML (UofT) CSC2515-Lech

Hyperbolic Tangent
(tanh)

e* —e %

V= e +e *

16 /48

Multilayer Perceptrons (Feedforward Neural Networks)

e Each layer computes a function, so the network
computes a composition of functions:

y [O O]
hM = fD(x) = g(WHx + b)) F

h® = f@OnM) = p(WEnM® 4 p?)

: f(3)m
' @O OO
_ fL)(pE-D) h [:i:j

e Or more compactly: WO O O
y= oo fO(x). o

@ Neural nets provide modularity: we can
implement each layer’s computations as a black
box.

Intro ML (UofT) CSC2515-Lech 17 /48

Multilayer Perceptrons (Feedforward Neural Networks)

y [© O O]
f(L)
) . @
e Q: Write down the equations of a two layer NN

(one hidden, one output), two hidden units, ¢ as O O O

the activation function of the hidden layer, and a @
linear one dimensional output layer. L @E
f(l)

x O O

Intro ML (UofT) CSC2515-Lech 18 /48

Feature Learning

Last layer:
o If task is regression: choose
y = fO (D) = (wNTh(E=1) 4 pL)
o If task is binary classification: choose
y = f(L)(h(Lfl)) = U((W(L))Th(Lfl) + b(L))

e Neural nets can be viewed as a way of learning features:

linear regressor/
classifier

o The goal:
it ;
o B wt T +++
=5 _ +
++y -

Intro ML (UofT) CSC2515-Lech 19 /48

Feature Learning

@ Suppose that we are trying to classify images of handwritten
digits. Each image is represented as a vector of 28 x 28 = 784 pixel
values.

o Each first-layer hidden unit computes ¢(wlx). It acts as a feature
detector.

@ We can visualize w by reshaping it into an image. Here is an
example that responds to a diagonal stroke.

Intro ML (UofT) OSC2515-Lecs 20/ 48

Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

Intro ML (UofT) CSC2515-Lech 21 /48

Expressive Power

@ We have seen that there are some functions that linear classifiers
cannot represent. Are deep networks any better?

@ Suppose a layer’s activation function is the identity function, so
the layer just computes an affine transformation of the input
» We call this a linear layer

e Any sequence of linear layers can be equivalently represented with
a single linear layer.

y = WOWAWW
—_—
AW/

» Deep linear networks are no more expressive than linear models.

» But the dynamics of training can be different than a single layer
linear model.

@ We need to have nonlinearities to increase expressivity of NN.

Intro ML (UofT) CSC2515-Lech 22 /48

Expressive Power

e Multilayer feed-forward neural nets with nonlinear activation
functions are universal function approximators: they can
approximate any function arbitrarily well.

e This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)
» Even though ReLU is “almost” linear, it is nonlinear enough.

Intro ML (UofT) CSC2515-Lech 23 /48

Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

1

1 ‘@ 1

Intro ML (UofT) CSC2515-Lech 24 /48

Multilayer Perceptrons

@ hy computes [[z; + 25 — 0.5 > 0]
» i.e. 1 OR 2o

@ ho computes [[z; + x5 — 1.5 > 0]
» ie. 1 AND z4

e y computes I[h; —hg — 0.5 > 0] =I[h; + (1 — ha) — 1.5 > 0]
> ie. hy AND (NOT hy) = 21 XOR x5

Intro ML (UofT) CSC2515-Lech 25 /48

Expressive Power

Universality for binary inputs and targets:
e Hard threshold hidden units, linear output
o Strategy: 2” hidden units, each of which responds to one

particular input configuration

X X9 X3 t

-1 -1 1| -1
;11 -1 |1
-1 1 1 l

@ Only requires one hidden layer, though it needs to be extremely

wide.
Intro ML (UofT)

CSC2515-Lech 26 /48

Expressive Power

e What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights
and biases:

10

08+

0.6+

04!

0.2-

R T R R S R]

y = olx) y = o(52)

e This is good: logistic units are differentiable, so we can train them
with gradient descent.

Intro ML (UofT) CSC2515-Lech 27 /48

Expressive Power

Let us do some exercises ...
@ Q: How can we represent the function that takes value of +1 in
x € [1,2] and 0 elsewhere using a simple NN with hard threshold
activation function?

f(=)

1 2 x

f(z) = wid(x —b1) + wg?(-’ﬂ —b2)

Intro ML (UofT) CSC2515-Lech 28 /48

Expressive Power

Let us do some exercises ...
@ Q: How can we approximately represent the function that takes
value of +1 in = € [1,2] and 0 elsewhere using a simple NN with
ReLlU activation function?

f(x)

1 2 x
flz) =~ w1¢k(v1(az —b1)) +wap(va(z — b2)) + ...

\
\
\

_

Intro ML (UofT) CSC2515-Lech 29 /48

Expressive Power

e Limits of universality
» You may need to represent an exponentially large network.
» How can you find the appropriate weights to represent a given
function?
» If you can learn any function, you’ll just overfit.
» We desire a compact representation.

Intro ML (UofT) CSC2515-Lech 30 /48

Training Neural Networks with
Backpropagation

Intro ML (UofT) CSC2515-Lech 31 /48

Recap: Gradient Descent

@ Recall: gradient descent moves in the opposite of the gradient

@ Weight space for a multilayer neural net: one coordinate for each weight
or bias of the network, in all the layers

@ Conceptually, not any different from what we have seen so far — just
higher dimensional and harder to visualize!

@ We want to define a loss £ and compute the gradient of the cost d.7/dw,
which is the vector of partial derivatives.

» This is the average of dL/dw over all the training examples, so in
this lecture we focus on computing d£/dw.

Intro ML (UofT) CSC2515-Lech 32 /48

Univariate Chain Rule

@ We have already been using the univariate Chain Rule.

o Recall: if f(x) and x(¢) are univariate functions, then

d dfde
af(ﬂﬁ(t)) L a

Intro ML (UofT) CSC2515-Lech 33 /48

Univariate Chain Rule

Recall: Univariate logistic least squares model

z=wx+b

y=o0(2)

R
oL 0L

Let’s compute the loss derivatives 3=, Gr.

Intro ML (UofT) CSC2515-Lech 34 /48

Univariate Chain Rule

How you would have done it in calculus class:

L= S(o(we+b) -0
oL o [1)
9w - 2w 2(0(11):(: +b)—1t)

10 oL o1
=5%(a(wx+b)7t)2 % " 2 E(U(wx—i-b)—t)Q
= (o(wz +b) — t)ai(o'(wx +b)—1t) =7 (Exercise!)

w

= (o(wz +b) — t)o’ (wx + b)a%(wx + b)
= (o(wz +b) — t)o’ (wz + b)x

What are the disadvantages of this approach?

Intro ML (UofT) CSC2515-Lech

35/48

Univariate Chain Rule

A more structured way to do it:

Computing the derivatives:
Computing the loss:

z=wx+b dy
df _dLdy _ df
y=o0(2) P qy o d—y a'(2)
Lz%(y—t)z oL _dLdz _dL
ow dz dw dz
8£ dL dz dll

T dzdb
Remember: The goal is not to obtain closed form solutlons but to be

able to write a program that efficiently computes the derivatives.

Intro ML (UofT) CSC2515-Lech 36 /48

Univariate Chain Rule

@ We can show the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

Compute Loss
 E——

t

Computing the loss:

z=wxr+b X
y=o(2) ~

£=%(y—t)2 b/

Compute Derivatives
—

Intro ML (UofT) CSC2515-Lech 37 /48

Univariate Chain Rule

A slightly more convenient notation:

@ Use 7 to denote the derivative of the loss w.r.t. y (i.e., dL/dy),
sometimes called the error signal.

» This is not a standard notation.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss:

z=wx+b
y=o0(z)
L=t

Intro ML (UofT)

Computing the derivatives:

w2
I

—t
'(2)

g
xT

<> g‘
(Il
ST I

I
S

CSC2515-Lech 38 /48

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the Multivariate Chain Rule!
Softmax classifier with the

cross-entropy loss

Lo-Regularized regression
WL 019

t
.’L'\ [)1
t
b—23r—Y——>L—>L 1o 12—y
y / -~ >£
W =R To—>20—1Y2 /
7 t2
z=wr+Db by w0y
y=o(2)
L= 2wy b
J
1 5 ek
R=-w -
2 o D€
Lrcg = L+ AR
& L=— Z tx log yr
k

39 /48

Intro ML (UofT) CSC2515-Lech

Multivariate Chain Rule

e Suppose that we have a function f(z,y) and functions z(¢) and
y(t). (All the variables here are scalar-valued). Then

_opds | 0fdy y/\\
\/'

o Example:
fla,y) =y +e”
x(t) = cost
y(t) =¢*
e Plug in to Chain Rule:

ar _orar ofdy
dt Oz dt = Oy dt
= (ye™) - (—sint) + (1 + ze™) - 2t

Intro ML (UofT) CSC2515-Lech 40 /48

Multivariate Chain Rule

e In the context of backpropagation:

Mathematical expressions
to be evaluated

df _ofde ofdy

dt Oz dt oydt N, 7
\ NN f
Values already computed | \ -
by our program / y/

@ In our notation:

o,

Y

ez g
= r— _—
a YA

Intro ML (UofT) CSC2515-Lech 41 /48

Backpropagation

Full backpropagation algorithm:

Let v1,...,vN be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

forward pass

backward pass

Intro ML (UofT)

Fori=1,...,N

Compute v; as a function of Pa(v;)

Fori=N-1,...,1
Ui = 2 jeCh(v)

CSC2515-Lech

U] 8’01‘

42 /48

Backpropagation

Example: univariate logistic least squares regression

" t Backward pass:
Qz—’y—»ﬁ—’ﬁrog
/ - Lreg =1
w >R 7o 7 Loy
T AR
Forward pass: = Lreg A
z=wx+b Z:L"reg%
dc
y=o0(z)
1 , = [freg
L = — —t —
2 (y) y=L di
R=tu? "
- oY =L(y—t)
Lreg = L+ AR

Intro ML (UofT) CSC2515-Lech

43 /48

Backpropagation

Multilayer Perceptron (multiple outputs):

(1) ,(2) ’
w11 D) Wy, ,(2)

o) \\ b2 \“‘ Backward pass:
N\ N tt _

L=1

$2—>Z2—>h2—>y2 Ve = L (ys — te)

t _
1)2”//T // ’ wy =T hs
= (1)
Wo oy

1
(1) Wa1 5 W ’1 2
) b()

Woo o k =Vr
Forward pass: _ @
hi= D Twg
Zi = Egl(zl)
hi = o(z
U(Z) @) wy) =7,
wy; hi + by —
Z bgl) =%
L= lz@ — 1)’
2 o k k

Intro ML (UofT) CSC2515-Lech

44 /48

Backpropagation

In vectorized form:

w w t Backward pass:
\ .
X—7—h—Y—L =l
y=L(y—t)
b b® WEe — yhT
Forward pass: b® — 7
z=Whx + b0 h=w®Ty
h = o(z) Z=hoo/(z)
y=W®&h +b® WO = zx"
£=3ly - tl? b =2

Intro ML (UofT) CSC2515-Lech

45/48

Computational Cost

e Computational cost of forward pass: one add-multiply operation

per weight
Z w(l):v] + b

e Computational cost of backward pass: two add-multiply
operations per weight

hi =Y wrw))
k

@ Rule of thumb: the backward pass is about as expensive as two
forward passes.

e For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Intro ML (UofT) CSC2515-Lech 46 / 48

Backpropagation

e Backprop is used to train the overwhelming majority of neural
nets today.

» Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally
implausible.

Intro ML (UofT) CSC2515-Lech 47 /48

Conclusion

o Multi-layer feedforward NN addressed the feature learning problem

e Backpropagation as a method to learn NN

Intro ML (UofT) CSC2515-Lech 48 / 48

	From Brain to Artificial Neural Networks
	Multilayer Perceptrons (Feedforward Neural Networks)
	Expressive Power

	Backpropagation

