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Unsupervised Learning: Motivating Examples

We have seen supervised learning problems where we are given a
data in the form of input x and target t.

▶ The label has always been given.
▶ Examples: Regression and Classification

Sometimes, we have access to data that does not have any target
associated with it, i.e., we only have x.

What can we do with such data?

We can try to find “interesting” pattern (or structure) in data.
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Unsupervised Learning: Motivating Examples

Determine groups of people in image above

▶ based on clothing styles
▶ gender, age, etc

Determine moving objects in videos
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Unsupervised Learning: Motivating Examples

You want to understand how a scientific field has changed over
time. You want to take a large database of papers and model how
the distribution of topics changes from year to year. But what are
the topics?

You are a biologist studying animal behaviour. You want to infer
a high-level description of their behaviour from video. You don’t
know the set of behaviour ahead of time.

You want to reduce your energy consumption, so you take a time
series of your energy consumption over time, and try to break it
down into separate components (when refrigerator, washing
machine, etc. were operating or not).
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Unsupervised Learning: Motivating Examples

You are a home appliance manufacturer. You want your washing
machine to automatically detect its need to be serviced based on
abnormal patterns of vibrations.

A bank wants to detect abnormal transactions in order to find
fraud.

You want to find factors that determine the personality of a
person based on personality surveys.

Q: Other examples of machine learning problems without labels?
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Unsupervised Learning

Common theme: You have some data, and you want to infer the
structure underlying the data.

This structure is latent, which means that it is not observed.

There are a variety of problems that can be thought of as an
unsupervised learning problem.

Several categories of unsupervised learning problems:
▶ Dimension reduction
▶ Clustering
▶ Density estimation
▶ Anomaly detection
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Dimensionality Reduction through PCA

Today we cover the first unsupervised learning algorithm for this
course: Principal Component Analysis (PCA)

PCA is a dimensionality reduction method.

Dimensionality reduction: Mapping the data to a lower
dimensional space.

▶ Interpretability and Visualization
▶ Saving computation and memory
▶ Reducing overfitting and achieve better generalization

PCA is a linear approach. It is useful for understanding many
other similar algorithms.

▶ Autoencoders
▶ Matrix factorizations

We use a lot of linear algebra in today’s lecture.
▶ Especially orthogonal matrices and eigendecompositions.
▶ Don’t worry if you don’t get it immediately.
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Setup: Multivariate Inputs

Setup: Given an i.i.d. dataset D = {x(1), . . . ,x(N)} ⊂ RD.
N instances/observations/examples

X =


[x(1)]⊤

[x(2)]⊤

...

[x(N)]⊤

 =


x
(1)
1 x

(1)
2 · · · x

(1)
D

x
(2)
1 x

(2)
2 · · · x

(2)
D

...
...

. . .
...

x
(N)
1 x

(N)
2 · · · x

(N)
D


Mean

E[x(i)] = µ = [µ1, · · · , µD]
⊤ ∈ RD

Covariance

Σ = Cov(x(i)) = E[(x(i)−µ)(x(i)−µ)⊤] =


σ2
1 σ12 · · · σ1D

σ12 σ2
2 · · · σ2D

...
...

. . .
...

σD1 σD2 · · · σ2
D
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Multivariate Gaussian Model

x(i) ∼ N (µ,Σ), a Gaussian (or normal) distribution defined as

p(x) =
1

(2π)d/2|Σ|1/2 exp
[
−1

2
(x− µ)⊤Σ−1(x− µ)

]
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Mean and Covariance Estimators

Observed data: D = {x(1), ...,x(N)}.
Recall that the MLE estimators for the mean µ and Σ under the
multivariate Gaussian model is given by (previous lecture)

Sample mean: µ̂ =
1

N

N∑
i=1

x(i)

Sample covariance: Σ̂ =
1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)⊤

µ̂ quantifies (approximately) where your data is located in space.

Σ̂ quantifies (approximately) how your data points are spread.
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Bivariate Normal

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5
0.5 1

)
Σ =

(
1 0.8
0.8 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Low-Dimensional Representation

Sometimes in practice, even though data is very high dimensional,
its important features can be accurately captured in a low
dimensional subspace.

Find a low dimensional representation of data:
▶ Interpretability, visualization
▶ Generalization
▶ Computational benefits
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Low-Dimensional Representation

Sometimes in practice, even though data is very high dimensional,
its important features can be accurately captured in a low
dimensional subspace.

Image credit: Elements of Statistical Learning
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Projection onto a Subspace

Given: A dataset D = {x(1), . . . ,x(N)} ⊂ RD.

Set µ̂ to the sample mean of the data, µ̂ = 1
N

∑N
i=1 x

(i).

Goal: Find a K-dimensional linear subspace S ⊂ RD such that
x(n) − µ̂ is “well-represented” by its projection onto a
K-dimensional S.
Recall: The projection of a point x onto S is the point in S closest
to x. More on this coming soon.
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We are Looking for Directions

For example, in a 2-dimensional problem, we are looking for the
direction u1 along which the data is well represented.
Different interpretation of “well represented”:

▶ (1) Direction of highest variance
▶ (2) Direction of minimum difference after projection

It turns out they are the same.
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Euclidean Projection

x
<latexit sha1_base64="aQovCNBfGYvMik6eaNEPmMdvGFo="></latexit>

x̃
<latexit sha1_base64="vRGvuS/mS5sDD9VyccbmKn/yt3w=">AAAHYXic3VVNb9NAEJ220LThKy3cejFElThFSYuglRAq5AKXqCmkLW0qZDub1Or6Q/YaNYr6K7jCD+PMH+Ht2E29JAbOXcve2fGbmTfjWa8TSS9RzebPhcWlO3eXKyur1Xv3Hzx8VFtbP0zCNHZFzw1lGB87diKkF4ie8pQUx1EsbN+R4si5aOv3R19FnHhh8EmNI3Hm26PAG3quraD63FeeHIjJ5dWXWr3ZaPKwZoVWLtQpH/vh2tJT6tOAQnIpJZ8EBaQgS7IpwXVKLWpSBN0ZTaCLIXn8XtAVVWGbAiWAsKG9wHOE1WmuDbDWPhO2dhFF4o5hadFmjhlAHrI2m3V8q4AtizFh35rjGLOT+/ShVXQO7b/srpH/a6dzUmC4w7l44BmxRmfpGhkNMUusFfjr5xhIAWkAqxiSC52ENtPoGDHmrK4683Ous804AUlzqvJX0r777MOGhwQ8+lPmDq4JHYBJxsWCnOEsMEy5RoKrfF0xXeGi34NSf0WUx19IcE3iuRxOChw+GOjy2CelfszMba5TyJ01vwJdowIm3qxEYvjulvoqogJ+nzKT+fE7hfgdA/236J1ST0WU3hU+uknvvss5Fu1C7LaBnY1dpU3ryW27dFbI9SPvOJd3l/yj65Jbm/lNn7zm3pC8UizZ+P6j/K+d9cfbqcZCZeL8XyeANzvzDfvSf6gR+kzlu/DGGzqJT51dPV5Oz5hZ4XCr0dpubHdf1Pfe5efPCm3QM3qOM+YV7dF72qceWPj0jb7Tj+VfldVKrbKeQRcXcpvHZIzKxm93/Eah</latexit>

u
<latexit sha1_base64="QtzwOPDpQFJUeBop551W7jLOcMU="></latexit>

kuk = 1

<latexit sha1_base64="fmq//vmGpfAWJbEMlvzOa0IQ/O0="></latexit>

kx
k

<latexit sha1_base64="JKd+7qyNo4acia4GYHarK8Q+73A="></latexit>

✓
<latexit sha1_base64="J928FhBg2yCaZBKO1MVNxpu3qmM="></latexit>

kx̃k = kxk cos
(✓)

<latexit sha1_base64="2ySkPSo7TKT55xKVmvGAfO/x/WM=">AAAHfHic3VVNb9NAEJ22UJfwlQI3LqahUhFqlFBUQAJUyAUuUVNIW7WuKtvZJFY3dmRvUKKkd34NV/gr/BnE27Gb2iQGzl3L3tnxm5k341mv05depCqVnwuLS9euLxsrNwo3b92+c7e4em8/CgahK5puIIPw0LEjIT1fNJWnpDjsh8LuOVIcOGc1/f7giwgjL/A/q1FfnPTsju+1PddWUJ0W16yJpTzZEuPhuTUx35jWZAiVG0QbluoKZT8pnBZLlXKFhzkrVBOhRMnYDVaXHpFFLQrIpQH1SJBPCrIkmyJcx1SlCvWhO6ExdCEkj98LOqcCbAdACSBsaM/w7GB1nGh9rLXPiK1dRJG4Q1iatJ5gWpDbrI1nHd9MYfNijNm35jjC7CQ+e9Aq6kL7L7sL5P/a6ZwUGL7kXDzw7LNGZ+lmMmpjllgr8NfPEZACUgtWISQXOgltrNExQsxxXXXmXa6zzTgBSXMq8FfSvi32YcNDBB7WlLmDa0x7YBJzMSHHOBMMB1wjwVW+qJiucNrvXq6/NMrjLyS4JuFcDkcpDh8z6PzYR7l+spnbXKeAO2t+BRqZCmTx2UpEGd+NXF9plM/vB8xkfvx6Kn49g/5b9HqupzRK74oeuknvvuEci1oqdi2DnY1doHXzwVW7dFbI9RPvOJd3l/yj66Irm/lln7zm3pC8UizZ+P6d5K8d98e7qcZEZcLkXyeAz3bmW/al/1Ad9JlKduGlN3QSnzqv9NienjGzwv6zcnWrvNV4Xtp5n5w/K/SQ1mgDZ8wL2qEPtEtNsPhK3+g7/Vj+ZTw2nhqbMXRxIbG5T5lhbP8GhqBQjw==</latexit>

S
<latexit sha1_base64="ly5tMjddIXxABWWAFiUKCAcecp4="></latexit>

Here, S is the line along the unit
vector u (1-dimensional subspace)

▶ u is a basis for S: any point in S
can be written as zu for some
z ∈ R.

Projection of x on S is denoted by ProjS(x)

Recall: x⊤u = ∥x∥∥u∥ cos(θ) = ∥x∥ cos(θ)
ProjS(x) = x⊤u︸︷︷︸

length of proj

· u︸︷︷︸
direction of proj

= ∥x̃∥u
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General Subspaces

In general, S is not one dimensional (i.e., line), but a (linear)
subspace with a dimension K.

In this case, we have K basis vectors u1,u2, · · · ,uK ∈ RD: any
vector y in S can be written as y =

∑K
i=1 ziui for some scalars

z1, . . . , zK .

Projection of x ∈ RD on this subspace is given by

ProjS(x) =

K∑
i=1

ziui where zi = x⊤ui.
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First Step: Center Data

u3
<latexit sha1_base64="BJtgPVIz0UB+7ENyLWvfoj6wESs="></latexit>

Directions we compute will pass through origin, and should
represent the direction of highest variance.

We need to center our data since we don’t want location of data to
influence our calculations. We are only interested in finding the
direction of highest variance. This is independent from its mean.

=⇒ We are not interested in u3; we are interested in u1.
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Projection onto a Subspace

Let {uk}Kk=1 be an orthonormal basis of the subspace S (a

K-dimensional linear subspace of RD).
▶ Orthogonal: The inner products of different basis are zero, that is,

u⊤
i uj = 0 for i ̸= j.

▶ Orthogonal: They are orthogonal, and their norm is 1, that is,
u⊤
i ui = ∥ui∥22 = 1.

Approximate each data point x ∈ RD as:

1. Center (subtract the mean)
2. Project onto S
3. Add the mean back

x̃ = µ̂+ ProjS(x− µ̂)

= µ̂+

K∑
k=1

zkuk
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Projection onto a Subspace

x̃ = µ̂+ ProjS(x− µ̂)

= µ̂+

K∑
k=1

zkuk

We also know: zk = u⊤
k (x− µ̂)

Let U ∈ RD×K be a matrix with columns {uk}Kk=1.

In matrix form,
z = U⊤(x− µ̂)

(Note that z ∈ RK).

So we can write x̃ as

x̃ = µ̂+Uz = µ̂+UU⊤(x− µ̂)

(Note that x̃ ∈ RD).

Here, UU⊤ is the projector onto S, and U⊤U = I. [Q: Why?]
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Projection onto a Subspace

Note that x and x̃ have the same dimensionality. That is, they are
both in RD.

But x̃ lives in a low dimensional subspace in RD.

Its low dimensional representation is z ∈ RK .
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Projection onto a Subspace

z = U⊤(x− µ̂)

In machine learning, x̃ is also called the reconstruction of x.

z is its representation or code.
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Projection onto a Subspace

If we have a K-dimensional subspace in a
D-dimensional input space, then x ∈ RD

and z ∈ RK .

If the data points x all lie close to their
reconstructions, then we can approximate
distances, etc. in terms of the same
operations on the code vectors z.

If K ≪ D, then it is much cheaper to work
with z than x.

A mapping to a space that is easier to
manipulate or visualize is called a
representation, and learning such a
mapping is representation learning.

Mapping data to a low-dimensional space is
called dimension reduction.
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Learning a Subspace

How to choose a good subspace S?
▶ Need to choose D ×K matrix U with orthonormal columns.

Two possible criteria:
▶ Minimize the reconstruction error: Find vectors in a subspace that

are closest to data points:

min
U

1

N

N∑
i=1

∥∥∥x(i) − x̃(i)
∥∥∥2

▶ Maximize the variance of reconstructions: Find a subspace where
data has the most variability:

max
U

1

N

∑
i

∥∥∥x̃(i) − µ̂
∥∥∥2
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Learning a Subspace

These two criteria are equivalent!
We show that

1

N

N∑
i=1

∥∥∥x(i) − x̃(i)
∥∥∥2 = const− 1

N

∑
i

∥∥∥x̃(i) − µ̂
∥∥∥2

Recall that x̃(i) = µ̂+Uz(i) and z(i) = U⊤(x(i) − µ̂).

Observation 1: As ∥v∥2 = v⊤v and U⊤U = I, we have
∥Uv∥2 = v⊤U⊤Uv = ∥v∥2. Therefore,

∥x̃(i)−µ̂∥2 = (Uz(i))⊤(Uz(i)) = [z(i)]⊤U⊤Uz(i) = [z(i)]⊤z(i) = ∥z(i)∥2.

Norm of centred reconstruction is equal to norm of representation.
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Pythagorean Theorem (Semi-Optional)

Observation 1: ∥x̃(i) − µ̂∥2 = ∥z(i)∥2
▶ Variance of reconstructions is equal to variance of code vectors:

1
N

∑
i ∥x̃(i) − µ̂∥2 = 1

N

∑
i ∥z(i)∥2 (exercise 1

N

∑
i z

(i) = 0)

Observation 2: Orthogonality of x̃(i) − µ̂ and x̃(i) − x(i)

(Two vectors a,b are orthogonal ⇐⇒ a⊤b = 0)

Recall that x̃(i) = µ̂+UU⊤(x(i) − µ̂).

To show the orthogonality of x̃(i) − µ̂ and x̃(i) − x(i),
observe that

(x̃(i) − µ̂)⊤(x̃(i) − x(i))

= (x(i) − µ̂)⊤UU⊤(µ̂− x(i) +UU⊤(x(i) − µ̂))

=−(x(i)−µ̂)⊤UU⊤(x(i) − µ̂) + (x(i)−µ̂)⊤UU⊤(x(i)−µ̂)

= 0

Q: How did we get UU⊤ from UU⊤UU⊤?
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Pythagorean Theorem

Because of the orthogonality of x̃(i) − µ̂ and x̃(i) − x(i), we can use the
Pythagorean theorem to conclude that∥∥∥x̃(i) − µ̂

∥∥∥2 + ∥∥∥x(i) − x̃(i)
∥∥∥2 = ∥∥∥x(i) − µ̂

∥∥∥2
By averaging over data, we obtain

1

N

N∑
i=1

∥x̃(i) − µ̂∥2︸ ︷︷ ︸
projected variance

+
1

N

N∑
i=1

∥x(i) − x̃(i)∥2︸ ︷︷ ︸
reconstruction error

=
1

N

N∑
i=1

∥x(i) − µ̂∥2︸ ︷︷ ︸
constant

Therefore, projected variance = constant− reconstruction error.
Maximizing the variance is equivalent to minimizing the reconstruction
error!
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize
the reconstruction error, is called Principal Component Analysis
(PCA).
Recall from Linear Algebra:

Spectral Decomposition: a symmetric matrix A has a full set of
eigenvectors, which can be chosen to be orthogonal. This gives a
decomposition

A = QΛQ⊤,

where Q is orthogonal and Λ is diagonal. The columns of Q are
eigenvectors of A, and the diagonal entries λj of Λ are the
corresponding eigenvalues.

That is, symmetric matrices are diagonal in some basis.

A symmetric matrix A is positive semidefinite iff each λj ≥ 0.

The matrix Q is an orthogonal matrix, i.e., it satisfies
Q⊤Q = QQ⊤ = I.
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Principal Component Analysis

Consider the empirical covariance matrix:

Σ̂ =
1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)⊤

Recall: Covariance matrices are symmetric and positive
semidefinite.
The optimal PCA subspace is spanned
by the top K eigenvectors of Σ̂.

▶ More precisely, choose the first K of
any orthonormal eigenbasis for Σ̂.

▶ The general case is tricky, but we
will show this for K = 1.

These eigenvectors are called principal
components, analogous to the
principal axes of an ellipse.
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Deriving PCA (Semi-Optional)

For K = 1, we are fitting a unit vector u, and the code is a scalar
z(i) = u⊤(x(i) − µ̂). Let’s maximize the projected variance. From
Observation 1, we have

1

N

∑
i

∥x̃(i) − µ̂∥2 =
1

N

∑
i

|z(i)|2 =
1

N

∑
i

(u⊤(x(i) − µ̂))2

=
1

N

N∑
i=1

u⊤(x(i) − µ̂)(x(i) − µ̂)⊤u (a⊤b)2 = a⊤bb⊤a

= u⊤

[
1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)⊤
]
u

= u⊤Σ̂u

= u⊤QΛQ⊤u Spectral Decomposition Σ̂ = QΛQ⊤

= a⊤Λa for a = Q⊤u

=
D∑

j=1

λja
2
j
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Deriving PCA (Semi-Optional)

In order to maximize 1
N

∑
i ∥x̃(i) − µ̂∥2, we can maximize

a⊤Λa =

D∑
j=1

λja
2
j

for a = Q⊤u instead.
▶ This is a change-of-basis to the eigenbasis of Σ.

Assume that λi are in sorted order: λ1 ≥ λ2 ≥ ....

Observation: since u is a unit vector, then by unitarity, a is also a
unit vector: a⊤a = u⊤QQ⊤u = u⊤u, i.e.,

∑
j a

2
j = 1.

To maximize
∑D

j=1 λja
2
j , under the constraint that ∥a∥2 = 1, we

can set a1 = ±1 and aj = 0 for j ̸= 1.

Hence, u = Qa = q1 (the top eigenvector).

A similar argument shows that the kth principal component is the
kth eigenvector of Σ. If you are interested, look up the
Courant-Fischer (Min-Max) Theorem.
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Decorrelation

Interesting fact: the dimensions of z are decorrelated. For now, let
Cov (·) denote the empirical covariance.

Cov (z) = Cov
(
U⊤(x− µ)

)
= U⊤Cov (x)U

= U⊤ΣU

= U⊤QΛQ⊤U

=
(
I 0

)
Λ

(
I
0

)
by orthogonality

= top left K ×K block of Λ

If the covariance matrix is diagonal, this means the features are
uncorrelated.
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Recap of PCA

Dimensionality reduction aims to find a low-dimensional
representation of the data.

PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction
error.

The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

PCA gives a set of decorrelated features.
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Applying PCA to faces

Consider running PCA on 2429 19x19 grayscale images (CBCL data)

Can get good reconstructions with only 3 components

PCA for pre-processing: can apply classifier to low-dimensional
representation

▶ Original data is 361 dimensional
▶ For face recognition PCA with 3 components obtains 79% accuracy

on face/non-face discrimination on test data vs. 76.8% for a
Gaussian mixture model (GMM) with 84 states.

Can also be good for visualization
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Applying PCA to faces: Learned basis

Principal components of face images (“eigenfaces”)
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Applying PCA to digits
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Other Interpretations

Two more interpretations of PCA, which have interesting
generalizations.

1. Autoencoders

2. Matrix factorization
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Autoencoders

An autoencoder is a feed-forward neural net whose job is to take
an input x and predict x.

To make this non-trivial, we need to add a bottleneck layer whose
dimension is smaller than the input.
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Linear Autoencoders

Why autoencoders?

Map high-dimensional data to two dimensions for visualization

Learn abstract features in an unsupervised way so you can apply
them to a supervised task

▶ Unlabled data can be much more plentiful than labeled data
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Linear Autoencoders

The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss.

L(x, x̃) = ∥x− x̃∥2

This network computes x̃ = W2W1x, which
is a linear function.

If K ≥ D, we can choose W2 and W1 such
that W2W1 is the identity matrix. This isn’t
very interesting.
But suppose K < D:

▶ W1 maps x to a K-dimensional space, so it is doing a
dimensionality reduction.
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Linear Autoencoders

Observe that the output of the autoencoder must lie in a
K-dimensional subspace spanned by the columns of W2. This is
because x̃ = W2z

We saw that the best possible (min error) K-dimensional linear
subspace in terms of reconstruction error is the PCA subspace.

The autoencoder can achieve this by setting W1 = U⊤ and
W2 = U.

Therefore, the optimal weights for a linear autoencoder are just
the principal components.
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Nonlinear Autoencoders

Deep nonlinear autoencoders learn to project the data, not onto a
linear subspace, but onto a nonlinear manifold

This is a nonlinear dimensionality reduction.
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Nonlinear Autoencoders

Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)
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Nonlinear Autoencoders

Here’s a 2-dimensional autoencoder representation of newsgroup
articles. They’re color-coded by topic, but the algorithm wasn’t given
the labels.
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Conclusion

Unsupervised Learning problem: The problem of finding patterns
or structure in data without access to labels.

There are many different types of unsupervised learning problem,
i.e., dimension reduction, clustering, anomaly detection, etc.

PCA as a linear dimension reduction that finds a subspace with
minimal reconstruction error

▶ Or equivalently, finds a substance that maximizes the variance of
reconstruction

There are many other dimension reduction methods, e.g., IsoMap,
Locally Linear Embedding, etc.

Autoencoders as a (nonlinear) dimension reduction method
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