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Overview

e We have covered PCA, which was an unsupervised learning
algorithm.
» Its main purpose was to reduce the dimension of the data.
» In practice, even though data is very high dimensional, it can be
well represented in low dimensions.

o This method relies on an assumption that data depends on some
latent variables, which are not observed. Such models are called
latent variable models.

» For PCA, these corresponds to the code vectors (representation).

» Today’s lecture: K-means, a simple algorithm for clustering, i.e.,
grouping data points into clusters

» Today’s lecture: Reformulate clustering as a latent variable model,
apply the Expectation-Maximization (EM) algorithm
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Clustering Problem

e Sometimes the data form clusters, where samples within a cluster
are similar to each other, and samples in different clusters are
dissimilar:

@ Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.
e Grouping data points into clusters, with no observed labels, is
called clustering. It is an unsupervised learning technique.
e Example: clustering machine learning papers based on topic (deep
learning, Bayesian models, etc.)
» But topics are never observed (unsupervised).
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Clustering Problem

@ Assume that the data points {x(*), ..., x(™)} live in an Euclidean space,
ie., x(" e RP,

@ Assume that each data point belongs to one of the K clusters

@ Assume that the data points from the same cluster are similar, i.e., close
in Euclidean distance.

@ How can we identify those clusters and the data points that belong to
each cluster?
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K-means Objective

Let’s formulate this as an optimization problem

o K-means Objective:
Find cluster centres {my,}/<, and assignments {r(™}_, to minimize the
sum of squared distances of data points {x(”)} to their assigned cluster
centres

» Data samples: x(") € R (n =1,..,N) (observed),
» Cluster centres: my € R (k=1,..,K) (not observed),
» Responsibilities: Cluster assignment for sample n:

r(" € RE 1-0f-K encoding (not observed)

@ Mathematically:

N K
min J ({mk}, {r(”)}) = min ™
{my ), {2} {mp}, {r0 ) ;,; :

2
)

‘mk —xm

where r,in) = I{x(™ is assigned to cluster k}, that is,
r™ =10,...,1,...,0]".
@ Finding an optimal solution is an NP-hard problem!
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K-means Objective

e Optimization problem:

N K
min Z Zré")

{my} rm} £

distance between x(™)
and its assigned cluster centre

e Since r,(cn) = I[{x(" is assigned to cluster k} (e.g.,
r(M=[0,...,1,...,0]T), the inner sum is over K terms but only
one of them is non-zero.

o For example, if data point x(™) is assigned to cluster k = 3, then

=10,0,1,0,...] and

K
Zr;(@n) Hmk - x(”)H2 = ng —x™
k=1

2
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How to Optimize? Alternating Minimization

Optimization problem:

min Z Z 7’(")

{my}{r(0} A

’mk x(™

Problem is hard when minimizing jointly over the parameters
{my}, {r™}.
@ But if we fix one and minimize over the other, then it becomes easy.

@ Idea: We can alternate between optimizing r (assignments) and m
(centres).

Doesn’t guarantee the same solution!
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Alternating Minimization (Optimizing Assignments)

Optimization problem:

N K
min erl(cn)”mk —x(M2

(E R EES s

@ Note:

» If we fix the centres {my}, we can easily find the optimal
assignments {r(™} for each sample n

K
min Z r,in) Hmk —x(
k=1

r(n)

2

> Assign each point to the cluster with the nearest centre
r’(cn) _ { 1 ifk= érgminj %™ — m;|?
0 otherwise
» B.g. if x™ is assigned to cluster k,
r™ =1[0,0,...,1,...,0] "

Only k-th entry is 1
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Alternating Minimization (Optimizing Centres)

o If we fix the assignments {r(")}, then we can easily find optimal centres
{my,}
» Set each cluster’s centre to the average of its assigned data points:
Forl=1,2,...K

5 MK .
0=—— | my — x™||?
aml;; T

N (n) o (n)
=2 Z r(n)(ml —xM) = m;= Lnr X"
1 )
n=1 Zn T

@ Let’s alternate between minimizing J({my}, {r(™}) with respect to
{m;} and {r(™}

@ This is called alternating minimization.
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K-means Algorithm

High level overview of algorithm:
@ Initialization: randomly initialize cluster centres
@ The algorithm iteratively alternates between two steps:

» Assignment step: Assign each data point to the closest cluster
» Refitting step: Move each cluster centre to the mean of the data
assigned to it

e  Assignments ° Refitted
. o o ° means
- b
—0 .
/. *
. o—. ‘o. 0
\ /. \. .
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Figure from Bishop
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The K-means Algorithm

@ Initialization: Set K cluster means my, ..., mg to random values
@ Repeat until convergence (until assignments do not change):

» Assignment: Optimize J w.r.t. {r}: Bach data point x(™) is
assigned to nearest centre

k) = argmkin ||my, — x™||?
and Responsibilities (1-hot or 1-of-K encoding)
ri = I{E™ =k} for k=1,.,K
» Refitting: Optimize J w.r.t. {m}: Each centre is set to mean of

data assigned to it
(Mg ()
n 'k

X
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K-means for Vector Quantization

K=2 K=3

Figure from Bishop
@ Given image, construct “dataset” of pixels represented by their RGB
pixel intensities

@ Run K-means, replace each pixel by its cluster centre
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Questions about K-means

@ What if we used a different distance measure?
@ How can we choose the best distance?
@ How to choose K7

o Will it converge?
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Why K-means Converges

@ K-means algorithm reduces the cost at each iteration.

» Whenever an assignment is changed, the sum squared distances J of

data points from their assigned cluster centres is reduced.
» Whenever a cluster centre is moved, J is reduced.

@ Test for convergence: If the assignments do not change in the assignment
step, we have converged to a local minimum.

@ This will always happen after a finite number of iterations, since the
number of possible cluster assignments is finite (Q: How many?)

1 2 3 4
@ K-means cost function after each assignment step (blue) and refitting
step (red). The algorithm has converged after the third refitting step.
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Local Minima

@ The objective J is non-convex (so

coordinate descent on J is not A bad local optimum
guaranteed to converge to the global
minimum) L

@ There is nothing to prevent K-means o .-?):
getting stuck at local minima. . .

@ We could try many random starting

points
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Soft K-means

@ Instead of making hard assignments of data points to clusters, we can
make soft assignments. One cluster may have a responsibility of 0.7 for a
datapoint and another may have a responsibility of 0.3.

» Allows a cluster to use more information about the data in the
refitting step.

» How do we decide on the soft assignments?

» We already saw this in multi-class classification:

> 1-of-K encoding vs softmax assignments
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Soft K-means Algorithm

o Initialization: Set K means {my} to random values
@ Repeat until convergence (measured by how much J changes):

» Assignment: Each data point n given soft “degree of assignment” to
each cluster mean k, based on responsibilities

o _ exp(=fmy —x|?)
ko K
2 =1 exp(—pm; —x2)

— ™ = softmax(—B{||my, — x™||2} )

» Refitting: Model parameters (i.e., centre means) are adjusted to
match sample means of datapoints they are responsible for:

S My

Ty

mg =
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Questions about Soft K-means

Some remaining issues
@ How to set 57
@ Clusters with unequal weight and width?

These aren’t straightforward to address with K-means. Instead, in the sequel,
we will reformulate clustering using a generative model.

As B — oo, soft k-Means becomes K-Means! (Exercise)

Intro ML (UofT) CSC2515-Lecl0 20 /42



A Generative View of Clustering

@ Next: probabilistic formulation of clustering
@ We need a sensible measure of what it means to cluster the data well

» This makes it possible to judge different methods
» It may help us decide on the number of clusters

@ An obvious approach is to imagine that the data was produced by a
generative model

» Then we adjust the model parameters using maximum likelihood,
i.e., to maximize the probability that it would produce exactly the
data we observed
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The Generative Model

o We will be working with the following generative model for data D
o Assume a datapoint x is generated as follows:

» Choose a cluster z from {1,..., K} such that p(z = k) = my,
» Given z, sample x from a Gaussian distribution N (x|p, I)

e Can also be written:
p(z=k)=m

p(x[z = k) = N (x|py, )
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Clusters from Generative Model

o This defines joint distribution p(z,x) = p(2)p(x|z) with
parameters {(mg, py,) }_,

o The marginal of x is given by p(x) =, p(z, x)

e p(z = k|x) can be computed using Bayes rule

p(x|z=k)p(z = k)
p(x) '

p(z = k[x) =

This tells us the probability that x comes from the k' cluster.
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The Generative Model

@ 500 points drawn from a mixture of 3 Gaussians.

0.5

a) Samples from p(x | z) b) Samples from the marginal p(x) c) Responsibilities p(z | x)
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Maximum Likelihood with Latent Variables

o How should we choose the parameters {(mx, py) }_,?

e Maximum likelihood principle: choose parameters to maximize the
likelihood of observed data

We don’t observe the cluster assignments z; we only see the data x

Given data D = {x(™ N_|, choose parameters to maximize:

N
logp(D) = > log p(x™)
n=1

e We can find p(x) by marginalizing out z:

K

K
p(x) = p(z=kx) = pz=k)p(x|]z = k)
k=1
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Gaussian Mixture Model (GMM)

What is p(x)?

p(x) =Y p(z=k)p(x|z = k) = Y MmN (x|p;,, T)

k=1 k=1

@ This distribution is an example of a Gaussian Mixture Model (GMM),
and 7, are known as the mixing coefficients

@ In general, we would have different covariance for each cluster, i.e.,
p(x|z =k) = N(x|p, k). For this lecture, we assume that Xy =1 for
simplicity.

o If we allow arbitrary covariance matrices, GMMs are universal
approximators of densities (if you have enough Gaussians). Even
diagonal GMMs are universal approximators.
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Visualizing a Mixture of Gaussians — 1D Gaussians

o If you fit one Gaussian distribution to data:

- - Data Density
0.06 — Model
0.05 AN I
0.04
0.03
0.02 ; L
0.01 /

0 .
0 50 100 150 200 250 0 50 100

Probability

@ Now, we are trying to fit a GMM with K = 2:

Mixture Model

— Model Fit

150 200 250

Data Samples (nSamp = 500)

0.06 — comp 1
==+ comp 2
> 0.05 == mixture
'-(l; 0.04
=}
o 0.03
o
0.02
0.01 \
A,
0
0 200 250 O 50 100

[Slide credit: K. Kutulakos]
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Visualizing a Mixture of Gaussians — 2D Gaussians

. . 025 \
08 1

0 0.2 0.4 0.6 0 0.1 02 03 04 05 06 07 08 09
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Fitting GMMs: Maximum Likelihood

Maximum likelihood objective:
N K
logp(D | 6) Z logp(x™ | 9) Z log <Z WkN(X(n)|p,k7I)>
n=1 k=1

@ How would you optimize this w.r.t. parameters 0 = {(mx, py)}?

» No closed-form solution when we set derivatives to 0
» Difficult because sum inside the log

@ One option: gradient ascent. Can we do better?

@ Can we have a closed-form update?
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Maximum Likelihood

@ Observation: If we knew 2(™ for every x(™ (i.e., our dataset was
Deomplete = {(z("),x("))}nNzl), the maximum likelihood problem would
be easy:

N
1ng('Z)complete | 0) = Z 1ng(z(n)’x(n) | 0)

n=1

—Zlogp x|z, 0) +log p(=") | 6)

K
SO =k} (log N (x|, 1) + log )

k=1

I
M= 1

~
Il
N

7
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Maximum Likelihood

N K

logp(Dcomplete | 0 Z Z {Z(n) = k} <logN(X(n) ‘/’l’kv I) + IOg ﬂ-k)

@ We have been optimizing something similar for the Naive Bayes
classifiers.

° By maXimiZing 1ng(Dcotrlplete | 0), we would get this:

i >opy {2 = K} x ™)

o, = = = class means
' St Iz = k}
1
T = N ; I{z") = k} = class proportions

Intro ML (UofT) CSC2515-Lecl0 31 /42



Maximum Likelihood

@ But we haven’t observed the cluster assignments z(™).

@ We can compute p(z(™|x(™) using Bayes rule, given our current
estimate 6°'9.

@ Conditional probability (using Bayes rule) of z given x

p(z = k)p(x|z = k)
p(x)
p(z = k)p(x[z = k)
> p(z = Hp(x]z = j)
N (x| 1)
Zf:l 7Tj-/\/(xmjv I)

plz = kix) =
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Maximum Likelihood

N K
logp Complctc Z Z IOgN(X(n ‘Hk; ) + IOg 7Tk)

@ We don’t know the cluster assignments I{z(") =k} (they are our latent
variables), but we know their expectation w.r.t. the current estimate
OOId:

E[]I{z(") =k}| x("); HOId} :p(z(") = k|x(") : 0°1d).

@ So we consider

N K
Z Ep(z(n)|x(n);9°“) Z H{Z<n) = k}(lOgN(X(n)“l,k, I) + IOg 7Tk:) =

n=1 k=1

N K

ST log N (x ™y, T) + log ),
n=1k=1

with 7 ( = p(z" = k[x(™); °'9).
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Maximum Likelihood

N K
ZZ (log N (™ |y, T) + log )
1 k=1

@ This is still easy to optimize! Solution is similar to what we have seen:

. Ziv:l T’({:”)X(n) A 271:[ 1 Tl(cn)
S SO TN

(n) _ mN<x<"> S!
T S NG [y D)

@ Note: this only works if we treat r, as fixed, i.e.,

depending on 6°'4.
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How Can We Fit a Mixture of Gaussians?

@ This motivates the Expectation-Maximization algorithm, which
alternates between two steps:

1. E-step: Compute the posterior probabilities r,(cn) = p(z(") = k;|x("))
given our current model, i.e., how much do we think a cluster is
responsible for generating a datapoint.

2. M-step: Use the equations on the last slide to update the
parameters, assuming rlgn) are held fixed — change the parameters of
each Gaussian to maximize the probability that it would generate
the data it is currently responsible for.

.9.5
(] 05 .05 U

[ )
.95
N
5 5 y
¢ O .
5 .
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EM Algorithm for GMM

@ Initialize the means fi;, and mixing coefficients 7y,

@ Iterate until convergence:

» E-step: Evaluate the responsibilities r,(cn) given current parameters

f ™)1, , T fp exp(— 2 [|x™ — fu ||?
PV (2" = |x™) N (<™, I) Frexp(—5| |7

Sy BN (x|, T) S0y exp(— 51X — g 2)

» M-step: Re-estimate the parameters given current responsibilities

1 N
~ o (n) (n
e = m;“ﬂ <"
N
. N . (n)
Tk = W with Nk = ng:l Tkn

» Evaluate log likelihood and check for convergence

N K
logp(D) = Y _ log (Z AN (x|, I))
n=1 k=1
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What Just Happened: A Review

e The maximum likelihood objective 27]:/:1 log p(x(™) was hard to
optimize

@ The complete data likelihood objective was easy to optimize:

N K
Zlogp x) = 3" S 1 = k) (log N (x(™ |pay, T) + log i)

n=1k=1

o We don’t know z(s (they are latent) so we replaced I{z("™ = k}
with responsibilities r,g "= = p(2" = k|x™).

e That is: we replaced I{z(™ = k} with its expectation under
p(z™]x() (E-step).
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What Just Happened: A Review

e We ended up with the expected complete data log-likelihood:

N
D B iy log p(=" erk (log NV (x| pay,, T)+log ),
n=1 n=1k=1

which we maximized over parameters { (g, )} (M-step)

o The EM algorithm alternates between:

» The E-step: computing the r,(cn) = p(z™ = k|x(™) (i.e. expectations

E[I{z(™ = k}|x(™]) given the current model parameters (g, ;)
» The M-step: update the model parameters (7, ;) to optimize the
expected complete data log-likelihood
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Relation to K-Means

The K-Means Algorithm:
1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster centre to the average of the data
assigned to it
e The EM Algorithm:
1. E-step: Compute the posterior probability over z given our current
model
2. M-step: Maximize the probability that it would generate the data it
is currently responsible for.

e Can you find the similarities between the soft K-Means algorithm
and EM algorithm with shared covariance %I?

Both rely on alternating optimization methods and can suffer from
bad local optima.
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Further Discussion

@ We assumed that the covariance of each Gaussian was I to simplify the
math. This assumption can be removed, allowing clusters to have
different spatial spreads. The resulting algorithm is still very simple.

@ Possible problems with maximum likelihood objective:

» Singularities: Arbitrarily large likelihood when a Gaussian explains
a single point with variance shrinking to zero
» Non-convex

o EM is more general than what was covered in this lecture. Here, EM
algorithm is used to find the optimal parameters under the GMMs.
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GMM Recap

A probabilistic view of clustering. Each cluster corresponds to a
different Gaussian.

@ Model using latent variables.

o General approach. We can replace Gaussian with other
distributions (continuous or discrete)

e More generally, mixture models are very powerful models, i.e.,
universal distribution approximators

o Optimization is done using the EM algorithm.
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