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Overview

We have covered PCA, which was an unsupervised learning
algorithm.

▶ Its main purpose was to reduce the dimension of the data.
▶ In practice, even though data is very high dimensional, it can be

well represented in low dimensions.

This method relies on an assumption that data depends on some
latent variables, which are not observed. Such models are called
latent variable models.

▶ For PCA, these corresponds to the code vectors (representation).
▶ Today’s lecture: K-means, a simple algorithm for clustering, i.e.,

grouping data points into clusters
▶ Today’s lecture: Reformulate clustering as a latent variable model,

apply the Expectation-Maximization (EM) algorithm
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Clustering Problem

Sometimes the data form clusters, where samples within a cluster
are similar to each other, and samples in different clusters are
dissimilar:

Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

Grouping data points into clusters, with no observed labels, is
called clustering. It is an unsupervised learning technique.

Example: clustering machine learning papers based on topic (deep
learning, Bayesian models, etc.)

▶ But topics are never observed (unsupervised).

Intro ML (UofT) CSC2515-Lec10 4 / 42



Clustering Problem

Assume that the data points {x(1), . . . ,x(N)} live in an Euclidean space,
i.e., x(n) ∈ RD.

Assume that each data point belongs to one of the K clusters

Assume that the data points from the same cluster are similar, i.e., close
in Euclidean distance.

How can we identify those clusters and the data points that belong to
each cluster?
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K-means Objective

Let’s formulate this as an optimization problem

K-means Objective:
Find cluster centres {mk}Kk=1 and assignments {r(n)}Nn=1 to minimize the
sum of squared distances of data points {x(n)} to their assigned cluster
centres

▶ Data samples: x(n) ∈ RD (n = 1, .., N) (observed),
▶ Cluster centres: mk ∈ RD (k = 1, ..,K) (not observed),
▶ Responsibilities: Cluster assignment for sample n:

r(n) ∈ RK 1-of-K encoding (not observed)

Mathematically:

min
{mk},{r(n)}

J
(
{mk}, {r(n)}

)
= min

{mk},{r(n)}

N∑
n=1

K∑
k=1

r
(n)
k

∥∥∥mk − x(n)
∥∥∥2 ,

where r
(n)
k = I{x(n) is assigned to cluster k}, that is,

r(n) = [0, . . . , 1, . . . , 0]⊤.

Finding an optimal solution is an NP-hard problem!
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K-means Objective

Optimization problem:

min
{mk},{r(n)}

N∑
n=1

K∑
k=1

r
(n)
k

∥∥∥mk − x(n)
∥∥∥2︸ ︷︷ ︸

distance between x(n)

and its assigned cluster centre

Since r
(n)
k = I{x(n) is assigned to cluster k} (e.g.,

r(n)=[0, . . . , 1, . . . , 0]⊤), the inner sum is over K terms but only
one of them is non-zero.

For example, if data point x(n) is assigned to cluster k = 3, then
rn = [0, 0, 1, 0, ...] and

K∑
k=1

r
(n)
k

∥∥∥mk − x(n)
∥∥∥2 = ∥∥∥m3 − x(n)

∥∥∥2 .
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How to Optimize? Alternating Minimization

Optimization problem:

min
{mk},{r(n)}

N∑
n=1

K∑
k=1

r
(n)
k

∥∥∥mk − x(n)
∥∥∥2

Problem is hard when minimizing jointly over the parameters
{mk}, {r(n)}.

But if we fix one and minimize over the other, then it becomes easy.

Idea: We can alternate between optimizing r (assignments) and m
(centres).

Doesn’t guarantee the same solution!
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Alternating Minimization (Optimizing Assignments)

Optimization problem:

min
{mk},{r(n)}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

Note:

▶ If we fix the centres {mk}, we can easily find the optimal
assignments {r(n)} for each sample n

min
r(n)

K∑
k=1

r
(n)
k

∥∥∥mk − x(n)
∥∥∥2 .

▶ Assign each point to the cluster with the nearest centre

r
(n)
k =

{
1 if k = argminj ∥x(n) −mj∥2
0 otherwise

▶ E.g. if x(n) is assigned to cluster k̂,

r(n) = [0, 0, ..., 1, ..., 0]⊤︸ ︷︷ ︸
Only k̂-th entry is 1
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Alternating Minimization (Optimizing Centres)

If we fix the assignments {r(n)}, then we can easily find optimal centres
{mk}

▶ Set each cluster’s centre to the average of its assigned data points:
For l = 1, 2, ...,K

0 =
∂

∂ml

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

=2

N∑
n=1

r
(n)
l (ml − x(n)) =⇒ ml =

∑
n r

(n)
l x(n)∑
n r

(n)
l

Let’s alternate between minimizing J({mk}, {r(n)}) with respect to
{mk} and {r(n)}

This is called alternating minimization.
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K-means Algorithm

High level overview of algorithm:

Initialization: randomly initialize cluster centres

The algorithm iteratively alternates between two steps:

▶ Assignment step: Assign each data point to the closest cluster
▶ Refitting step: Move each cluster centre to the mean of the data

assigned to it

Assignments Refitted 
means 
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Figure from Bishop Simple demo: http://syskall.com/kmeans.js/
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The K-means Algorithm

Initialization: Set K cluster means m1, . . . ,mK to random values

Repeat until convergence (until assignments do not change):

▶ Assignment: Optimize J w.r.t. {r}: Each data point x(n) is
assigned to nearest centre

k̂(n) = argmin
k

||mk − x(n)||2

and Responsibilities (1-hot or 1-of-K encoding)

r
(n)
k = I{k̂(n) = k} for k = 1, ..,K

▶ Refitting: Optimize J w.r.t. {m}: Each centre is set to mean of
data assigned to it

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

.
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K-means for Vector Quantization

Figure from Bishop

Given image, construct “dataset” of pixels represented by their RGB
pixel intensities

Run K-means, replace each pixel by its cluster centre
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Questions about K-means

What if we used a different distance measure?

How can we choose the best distance?

How to choose K?

Will it converge?
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Why K-means Converges

K-means algorithm reduces the cost at each iteration.

▶ Whenever an assignment is changed, the sum squared distances J of
data points from their assigned cluster centres is reduced.

▶ Whenever a cluster centre is moved, J is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged to a local minimum.

This will always happen after a finite number of iterations, since the
number of possible cluster assignments is finite (Q: How many?)

K-means cost function after each assignment step (blue) and refitting
step (red). The algorithm has converged after the third refitting step.
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Local Minima

The objective J is non-convex (so
coordinate descent on J is not
guaranteed to converge to the global
minimum)

There is nothing to prevent K-means
getting stuck at local minima.

We could try many random starting
points

A bad local optimum 
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Soft K-means

Instead of making hard assignments of data points to clusters, we can
make soft assignments. One cluster may have a responsibility of 0.7 for a
datapoint and another may have a responsibility of 0.3.

▶ Allows a cluster to use more information about the data in the
refitting step.

▶ How do we decide on the soft assignments?
▶ We already saw this in multi-class classification:

▶ 1-of-K encoding vs softmax assignments
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Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Repeat until convergence (measured by how much J changes):

▶ Assignment: Each data point n given soft “degree of assignment” to
each cluster mean k, based on responsibilities

r
(n)
k =

exp(−β∥mk − x(n)∥2)∑K
j=1 exp(−β∥mj − x(n)∥2)

=⇒ r(n) = softmax(−β{∥mk − x(n)∥2}Kk=1)

▶ Refitting: Model parameters (i.e., centre means) are adjusted to
match sample means of datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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Questions about Soft K-means

Some remaining issues

How to set β?

Clusters with unequal weight and width?

These aren’t straightforward to address with K-means. Instead, in the sequel,
we will reformulate clustering using a generative model.

As β → ∞, soft k-Means becomes K-Means! (Exercise)
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A Generative View of Clustering

Next: probabilistic formulation of clustering

We need a sensible measure of what it means to cluster the data well

▶ This makes it possible to judge different methods
▶ It may help us decide on the number of clusters

An obvious approach is to imagine that the data was produced by a
generative model

▶ Then we adjust the model parameters using maximum likelihood,
i.e., to maximize the probability that it would produce exactly the
data we observed
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The Generative Model

We will be working with the following generative model for data D
Assume a datapoint x is generated as follows:

▶ Choose a cluster z from {1, . . . ,K} such that p(z = k) = πk

▶ Given z, sample x from a Gaussian distribution N (x|µz, I)

Can also be written:
p(z = k) = πk

p(x|z = k) = N (x|µk, I)
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Clusters from Generative Model

This defines joint distribution p(z,x) = p(z)p(x|z) with
parameters {(πk,µk)}Kk=1

The marginal of x is given by p(x) =
∑

z p(z,x)

p(z = k|x) can be computed using Bayes rule

p(z = k|x) = p(x | z = k)p(z = k)

p(x)
.

This tells us the probability that x comes from the kth cluster.
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The Generative Model

500 points drawn from a mixture of 3 Gaussians.

a) Samples from p(x | z) b) Samples from the marginal p(x) c) Responsibilities p(z |x)

Intro ML (UofT) CSC2515-Lec10 24 / 42



Maximum Likelihood with Latent Variables

How should we choose the parameters {(πk,µk)}Kk=1?

Maximum likelihood principle: choose parameters to maximize the
likelihood of observed data

We don’t observe the cluster assignments z; we only see the data x

Given data D = {x(n)}Nn=1, choose parameters to maximize:

log p(D) =

N∑
n=1

log p(x(n))

We can find p(x) by marginalizing out z:

p(x) =

K∑
k=1

p(z = k,x) =

K∑
k=1

p(z = k)p(x|z = k)
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Gaussian Mixture Model (GMM)

What is p(x)?

p(x) =

K∑
k=1

p(z = k)p(x|z = k) =

K∑
k=1

πkN (x|µk, I)

This distribution is an example of a Gaussian Mixture Model (GMM),
and πk are known as the mixing coefficients

In general, we would have different covariance for each cluster, i.e.,
p(x | z = k) = N (x|µk,Σk). For this lecture, we assume that Σk = I for
simplicity.

If we allow arbitrary covariance matrices, GMMs are universal
approximators of densities (if you have enough Gaussians). Even
diagonal GMMs are universal approximators.
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Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit one Gaussian distribution to data:

Now, we are trying to fit a GMM with K = 2:

[Slide credit: K. Kutulakos]
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Visualizing a Mixture of Gaussians – 2D Gaussians
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Fitting GMMs: Maximum Likelihood

Maximum likelihood objective:

log p(D | θ) =
N∑

n=1

log p(x(n) | θ) =
N∑

n=1

log

(
K∑

k=1

πkN (x(n)|µk, I)

)

How would you optimize this w.r.t. parameters θ = {(πk,µk)}?
▶ No closed-form solution when we set derivatives to 0
▶ Difficult because sum inside the log

One option: gradient ascent. Can we do better?

Can we have a closed-form update?
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Maximum Likelihood

Observation: If we knew z(n) for every x(n) (i.e., our dataset was
Dcomplete = {(z(n),x(n))}Nn=1), the maximum likelihood problem would
be easy:

log p(Dcomplete | θ) =
N∑

n=1

log p(z(n),x(n) | θ)

=

N∑
n=1

log p(x(n)|z(n),θ) + log p(z(n) | θ)

=

N∑
n=1

K∑
k=1

I{z(n) = k}
(
logN (x(n)|µk, I) + log πk

)
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Maximum Likelihood

log p(Dcomplete | θ) =
N∑

n=1

K∑
k=1

I{z(n) = k}
(
logN (x(n)|µk, I) + log πk

)

We have been optimizing something similar for the Näıve Bayes
classifiers.

By maximizing log p(Dcomplete | θ), we would get this:

µ̂k =

∑N
n=1 I{z(n) = k}x(n)∑N

n=1 I{z(n) = k}
= class means

π̂k =
1

N

N∑
n=1

I{z(n) = k} = class proportions

Intro ML (UofT) CSC2515-Lec10 31 / 42



Maximum Likelihood

But we haven’t observed the cluster assignments z(n).

We can compute p(z(n)|x(n)) using Bayes rule, given our current
estimate θold.

Conditional probability (using Bayes rule) of z given x

p(z = k|x) =
p(z = k)p(x|z = k)

p(x)

=
p(z = k)p(x|z = k)∑K
j=1 p(z = j)p(x|z = j)

=
πkN (x|µk, I)∑K
j=1 πjN (x|µj , I)
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Maximum Likelihood

log p(Dcomplete) =

N∑
n=1

K∑
k=1

I{z(n) = k}(logN (x(n)|µk, I) + log πk)

We don’t know the cluster assignments I{z(n)=k} (they are our latent
variables), but we know their expectation w.r.t. the current estimate
θold:

E[I{z(n)=k} |x(n);θold]=p(z(n)=k|x(n);θold).

So we consider

N∑
n=1

Ep(z(n)|x(n);θold)

[
K∑

k=1

I{z(n) = k}(logN (x(n)|µk, I) + log πk)

]
=

N∑
n=1

K∑
k=1

r
(n)
k (logN (x(n)|µk, I) + log πk),

with r
(n)
k = p(z(n) = k|x(n);θold).

Intro ML (UofT) CSC2515-Lec10 33 / 42



Maximum Likelihood

N∑
n=1

K∑
k=1

r
(n)
k (logN (x(n)|µk, I) + log πk)

This is still easy to optimize! Solution is similar to what we have seen:

µ̂k =

∑N
n=1 r

(n)
k x(n)∑N

n=1 r
(n)
k

π̂k =

∑N
n=1 r

(n)
k

N

Note: this only works if we treat r
(n)
k = πkN (x(n)|µk,I)∑K

j=1 πjN (x(n)|µj ,I)
as fixed, i.e.,

depending on θold.
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How Can We Fit a Mixture of Gaussians?

This motivates the Expectation-Maximization algorithm, which
alternates between two steps:

1. E-step: Compute the posterior probabilities r
(n)
k = p(z(n) = k|x(n))

given our current model, i.e., how much do we think a cluster is
responsible for generating a datapoint.

2. M-step: Use the equations on the last slide to update the

parameters, assuming r
(n)
k are held fixed – change the parameters of

each Gaussian to maximize the probability that it would generate
the data it is currently responsible for.

.95 

.5 

.5 

.05 

.5 
.5 

.95 
.05 
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EM Algorithm for GMM

Initialize the means µ̂k and mixing coefficients π̂k

Iterate until convergence:

▶ E-step: Evaluate the responsibilities r
(n)
k given current parameters

r
(n)
k = p(z(n)=k|x(n)) =

π̂kN (x(n)|µ̂k, I)∑K
j=1 π̂jN (x(n)|µ̂j , I)

=
π̂k exp(− 1

2
∥x(n) − µ̂k∥2)∑K

j=1 π̂j exp(− 1
2
∥x(n) − µ̂j∥2)

▶ M-step: Re-estimate the parameters given current responsibilities

µ̂k =
1

Nk

N∑
n=1

r
(n)
k x(n)

π̂k =
Nk

N
with Nk =

N∑
n=1

r
(n)
k

▶ Evaluate log likelihood and check for convergence

log p(D) =
N∑

n=1

log

(
K∑

k=1

π̂kN (x(n)|µ̂k, I)

)
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What Just Happened: A Review

The maximum likelihood objective
∑N

n=1 log p(x
(n)) was hard to

optimize

The complete data likelihood objective was easy to optimize:

N∑
n=1

log p(z(n),x(n)) =

N∑
n=1

K∑
k=1

I{z(n) = k}(logN (x(n)|µk, I)+ log πk)

We don’t know z(n)s (they are latent), so we replaced I{z(n) = k}
with responsibilities r

(n)
k = p(z(n) = k|x(n)).

That is: we replaced I{z(n) = k} with its expectation under
p(z(n)|x(n)) (E-step).
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What Just Happened: A Review

We ended up with the expected complete data log-likelihood:

N∑
n=1

Ep(z(n)|x(n))[log p(z
(n),x(n))] =

N∑
n=1

K∑
k=1

r
(n)
k

(
logN (x(n)|µk, I)+log πk

)
,

which we maximized over parameters {(πk,µk)}k (M-step)

The EM algorithm alternates between:

▶ The E-step: computing the r
(n)
k = p(z(n) = k|x(n)) (i.e. expectations

E[I{z(n) = k}|x(n)]) given the current model parameters (πk,µk)
▶ The M-step: update the model parameters (πk,µk) to optimize the

expected complete data log-likelihood
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Relation to K-Means

The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster centre to the average of the data

assigned to it

The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it
is currently responsible for.

Can you find the similarities between the soft K-Means algorithm
and EM algorithm with shared covariance 1

β I?

Both rely on alternating optimization methods and can suffer from
bad local optima.
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Further Discussion

We assumed that the covariance of each Gaussian was I to simplify the
math. This assumption can be removed, allowing clusters to have
different spatial spreads. The resulting algorithm is still very simple.

Possible problems with maximum likelihood objective:

▶ Singularities: Arbitrarily large likelihood when a Gaussian explains
a single point with variance shrinking to zero

▶ Non-convex

EM is more general than what was covered in this lecture. Here, EM
algorithm is used to find the optimal parameters under the GMMs.
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GMM Recap

A probabilistic view of clustering. Each cluster corresponds to a
different Gaussian.

Model using latent variables.

General approach. We can replace Gaussian with other
distributions (continuous or discrete)

More generally, mixture models are very powerful models, i.e.,
universal distribution approximators

Optimization is done using the EM algorithm.

Intro ML (UofT) CSC2515-Lec10 42 / 42


	Introduction
	Clustering Problem
	K-Means Algorithms
	Generative Approach to Clustering
	Gaussian Mixture Model
	Expectation-Maximization


