Linear Algebra Review
(Adapted from Punit Shah’s slides)

Introduction to Machine Learning (CSC 2515)
Fall 2024

University of Toronto

Intro ML (UofT) CSC2515 — Tut 2 — Linear Algebra

1/28


http://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut4_slides.pdf

Basics

@ A scalar is a number.

@ A vector is a 1-D array of numbers. The set of vectors of length n
with real elements is denoted by R".

e Vectos can be multiplied by a scalar.
e Vector can be added together if dimensions match.

e A matrix is a 2-D array of numbers. The set of m x n matrices
with real elements is denoted by R"*™.

e Matrices can be added together or multiplied by a scalar.
e We can multiply Matrices to a vector if dimensions match.

@ In the rest we denote scalars with lowercase letters like a, vectors
with bold lowercase v, and matrices with bold uppercase A.
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Norms

e Norms measure how “large” a vector is. They can be defined for
matrices too.

e The /p-norm for a vector x:

S

Ixll, = | lal?
%

e The f5-norm is known as the Euclidean norm.
o The ¢;-norm is known as the Manhattan norm, i.e., ||x[[; =), |=;l.
o The /o, is the max (or supremum) norm, i.e., ||X||co = max; |z;|.
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Dot Product

e Dot product is defined as v-u=v'

u=>, uv;.
@ The /3 norm can be written in terms of dot product: ||ull2 = y/u.u.

@ Dot product of two vectors can be written in terms of their £y
norms and the angle 6 between them:

a'b = [all, [bll; cos(9).

dist (A, B)

B
COS 6
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Cosine Similarity

e Cosine between two vectors is a measure of their similarity:

a-b

<os(0) = [arTel

@ Orthogonal Vectors: Two vectors a and b are orthogonal to
each other if a-b = 0.
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Vector Projection

e Given two vectors a and b, let b= H%Il be the unit vector in the

direction of b.

o Then a; = ay - b is the orthogonal projection of a onto a straight
line parallel to b, where
b

a; = ||al|cos(d) =a-b=a- —
b

Image taken from wikipedia.
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Trace

e Trace is the sum of all the diagonal elements of a matrix, i.e.,

o Cyclic property:

Tr(ABC) = Tr(CAB) = Tr(BCA).
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Multiplication

o Matrix-vector multiplication is a linear transformation. In other
words,

M(vy + ave) = Moy + aMvy = (Mv); = ZMz‘,jUj-
J

o Matrix-matrix multiplication is the composition of linear
transformations, i.e.,

(AB)U = A(Bv) — (AB)ZJ = Zk Ai,kBk,j-

by |b, s
b, | b,
-
2o, [e)
Al ¥
as|as, 0
a,|a.

| SUUREA AUE S S A R
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Invertibility

o I denotes the identity matrix which is a square matrix of zeros
with ones along the diagonal. It has the property IA = A
(BI=B)and Iv=v

e A square matrix A is invertible if A~! exists such that
A7TA=AA =1

e Not all non-zero matrices are invertible, e.g., the following matrix
is not invertible:
11
11
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Transposition

e Transposition is an operation on matrices (and vectors) that
interchange rows with columns. (A1), ; = A ;.

o (AB)T =BTAT.
o A is called symmetric when A = AT,

o A is called orthogonal when AAT =ATA=Tor Al =AT.
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Diagonal Matrix

o A diagonal matrix has all entries equal to zero except the diagonal
entries which might or might not be zero, e.g. identity matrix.

e A square diagonal matrix with diagonal enteries given by entries of
vector v is denoted by diag(v).

Multiplying vector x by a diagonal matrix is efficient:
diag(v)x = vOx,

where ©® is the entrywise product.

e Inverting a square diagonal matrix is efficient
1 1
diag(v)™! = diag([—, ce —]T)
U1 Un,
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Determinant

@ Determinant of a square matrix is a mapping to scalars.
det(A) or |A]

@ Measures how much multiplication by the matrix expands or

contracts the space.

@ Determinant of product is the product of determinants:

det(AB) = det(A)det(B)

a b = ad — be
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List of Equivalencies

Assuming that A is a square matrix, the following statements are
equivalent

e Ax = b has a unique solution (for every b with correct
dimension).

o Ax = 0 has a unique, trivial solution: x = 0.
@ Columns of A are linearly independent.
e A is invertible, i.e. A~! exists.

det(A) # 0
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Zero Determinant

If det(A) = 0, then:

o A is linearly dependent.

o Ax = b has infinitely many solutions or no solution. These cases
correspond to when b is in the span of columns of A or out of it.

e Ax = 0 has a non-zero solution. (since every scalar multiple of
one solution is a solution and there is a non-zero solution we get
infinitely many solutions.)
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Matrix Decomposition

@ We can decompose an integer into its prime factors, e.g.,
12=2x2x 3.

e Similarly, matrices can be decomposed into product of other

matrices.
A = Vdiag \) V!

e Examples are Eigendecomposition, SVD, Schur decomposition, LU
decomposition, ....
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Figenvectors

@ An eigenvector of a square matrix A is a nonzero vector v such
that multiplication by A only changes the scale of v.

Av = v
@ The scalar A is known as the eigenvalue.

e If v is an eigenvector of A, so is any rescaled vector sv. Moreover,
sv still has the same eigenvalue. Thus, we constrain the
eigenvector to be of unit length:

vz =1
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Characteristic Polynomial(1)

e Kigenvalue equation of matrix A.
Av = v
Av—Av =0
(M-A)v =0

o If nonzero solution for v exists, then it must be the case that:

det(\I— A) = 0

Unpacking the determinant as a function of A\, we get:

Pa(A) =detA\I— A) =1 x A"+ ¢p1 x A" L4+ ¢

This is called the characterisitc polynomial of A.
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Characteristic Polynomial(2)

o If A\, \g,..., A, are roots of the characteristic polynomial, they are
eigenvalues of A and we have P4(\) = [[i=; (A — \i).

® ¢po1 =— i1 A = —tr(A). This means that the sum of
eigenvalues equals to the trace of the matrix.

o co=(—1)"TI"y \i = (—1)"det(A). The determinant is equal to
the product of eigenvalues.

e Roots might be complex. If a root has multiplicity of 7; > 1 (This
is called the algebraic dimension of eigenvalue), then the geometric
dimension of eigenspace for that eigenvalue might be less than r;
(or equal but never more). But for every eigenvalue, one
eigenvector is guaranteed.
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Example

o Consider the matrix:

@ The characteristic polynomial is:

A—2 -1

det()\IA):det[_1 N9

]:34)\+)\2:0

@ It has roots A =1 and A = 3 which are the two eigenvalues of A.
@ We can then solve for eigenvectors using Av = Av:

vaer = [1,—1]7 and wvy—3 =[1,1]T
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Eigendecomposition

Suppose that n x n matrix A has n linearly independent
eigenvectors {v(D), ... v("} with eigenvalues {\1,..., \n}.

e Concatenate eigenvectors (as columns) to form matrix V.

Concatenate eigenvalues to form vector X = [A1,..., \,]".

The eigendecomposition of A is given by:

AV = Vdiag(\) = A = Vdiag \)V!
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Symmetric Matrices

o Every symmetric (hermitian) matrix of dimension n has a set of
(not necessarily unique) n orthogonal eigenvectors. Furthermore,
all eigenvalues are real.

e Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:

A = QAQT
e Q is an orthogonal matrix of the eigenvectors of A, and A is a
diagonal matrix of eigenvalues.
e We can think of A as scaling space by J\; in direction v(?).

Plot of unit vectors #€R* Plot of vectors Au
(circle) (ellipse)

with two variables z; and z, |
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Eigendecomposition is not Unique

@ Decomposition is not unique when two eigenvalues are the same.

e By convention, order entries of A in descending order. Then,
eigendecomposition is unique if all eigenvalues have multiplicity
equal to one.

o If any eigenvalue is zero, then the matrix is singular. Because if v
is the corresponding eigenvector we have: Av = 0v = 0.
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Positive Definite Matrix

o If a symmetric matrix A has the property:
xAx >0 for any nonzero vector x
Then A is called positive definite.

e If the above inequality is not strict then A is called positive
semidefinite.

e For positive (semi)definite matrices all eigenvalues are positive(non
negative).
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Singular Value Decomposition (SVD)

If A is not square, eigendecomposition is undefined.

e SVD is a decomposition of the foom A = UDV'.

SVD is more general than eigendecomposition.

Every real matrix has a SVD.
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SVD Definition (1)

e Write A as a product of three matrices: A = UDV .
o If Aismxn,then Uism xm, Dism xn,and V is n X n.

e U and V are orthogonal matrices, and D is a diagonal matrix (not
necessarily square).

Diagonal entries of D are called singular values of A.

Columns of U are the left singular vectors, and columns of V
are the right singular vectors.
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SVD Definition (2)

@ SVD can be interpreted in terms of eigendecompostion.
o Left singular vectors of A are the eigenvectors of AAT.
e Right singular vectors of A are the eigenvectors of AT A.

e Nongzero singular values of A are square roots of eigenvalues of
ATA and AAT.

e Numbers on the diagonal of D are sorted largest to smallest and
are non-negative (AT A and AAT are semipositive definite.).
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Matrix norms

o We may define norms for matrices too. We can either treat a
matrix as a vector, and define a norm based on an entrywise norm
(example: Frobenius norm). Or we may use a vector norm to
“induce” a norm on matrices.

e Frobenius norm:

1Al =

@ Vector-induced (or operator, or spectral) norm:

[Ally = sup Az, .

llzll,=1
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SVD Optimality

e Given a matrix A, SVD allows us to find its “best” (to be defined)
rank-r approximation A,.

e We can write A = UDV' as A = S diw;v, .

For r < n, construct A, =>"" | diw;v, .

o The matrix A, is a rank-r approximation of A. Moreover, it is the
best approximation of rank r by many norms:

o When considering the operator (or spectral) norm, it is optimal.
This means that ||[A — A,||2 < ||A — B||2 for any rank r matrix B.

e When considering Frobenius norm, it is optimal. This means that
|A— A,||r < ||A— B||r for any rank r matrix B. One way to
interpret this inequality is that rows (or columns) of A, are the
projection of rows (or columns) of A on the best r dimensional
subspace, in the sense that this projection minimizes the sum of
squared distances.
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