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Overview of Optimization

I An informal definition of optimization: Minimize (or
maximize) some quantity.

I Applications:
I Engineering: Minimize fuel consumption of an automobile
I Economics: Maximize returns on an investment
I Supply Chain Logistics: Minimize time taken to fulfill an order
I Life: Maximize happiness

I More formally:
I Goal: find ✓⇤ =✓ f (✓) (possibly subject to constraints on ✓)
I ✓ 2 Rn, optimization variable
I f : Rn ! R, objective function



Optimization for Machine Learning

I Often in machine learning, we are interested in learning the
parameters ✓ of a model.

I Goal: minimize some loss function

I For example, if we have some data (x , y), we may want to
maximize P(y |x , ✓).

I Equivalently, we can minimize � logP(y |x , ✓).
I We can also minimize other sorts of loss functions

I Log can help for numerical reasons



Gradient Descent: Motivation

I From calculus, we know that the minimum of f must lie at a
point where @f (✓⇤)

@✓ = 0.

I Sometimes, we can solve this equation analytically for ✓.

I Most of the time, we are not so lucky and must resort to
iterative methods.

Brief review:

I Gradient: r✓f = ( @f
@✓1

, ..., @f
@✓k

).

I “Vector giving the direction (and rate) of steepest increase for
f .”



Outline of Gradient Descent Algorithm

Where ⌘ is the learning rate and T is the number of iterations:

I Initialize ✓0 randomly
I for t = 1 : T ,

I �t  �⌘r✓t�1 f
I ✓t  ✓t�1 + �t

The learning rate shouldn’t be too big (objective function will blow
up) or too small (will take a long time to converge)



Gradient Descent with Momentum

We can introduce a momentum coe�cient ↵ 2 [0, 1) so that the
updates have ”memory”:

I Initialize ✓0 randomly

I Initialize �0 to the zero vector
I for t = 1 : T ,

I �t  �⌘r✓t�1 f + ↵�t�1
I ✓t  ✓t�1 + �t

Momentum is a nice trick that can help speed up convergence.
Generally we choose ↵ between 0.8 and 0.95, but this is problem
dependent.
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! *?�M;2 BM Q#D2+iBp2 7mM+iBQM p�Hm2 Bb +HQb2 iQ x2`Q,
|7(θi+R)− 7(θi)| < ϵ

! :`�/B2Mi MQ`K Bb +HQb2 iQ x2`Q, ∥∇θ7∥ < ϵ
! o�HB/�iBQM 2``Q` bi�`ib iQ BM+`2�b2 Ui?Bb Bb +�HH2/ 2�`Hv biQTTBM;V
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! q?2M BKTH2K2MiBM; i?2 ;`�/B2Mi +QKTmi�iBQM 7Q` K�+?BM2
H2�`MBM; KQ/2Hb- BiǶb Q7i2M /B{+mHi iQ FMQr B7 Qm`
BKTH2K2Mi�iBQM Q7 7 �M/ ∇7 Bb +Q``2+iX

! q2 +�M mb2 }MBi2@/Bz2`2M+2b �TT`QtBK�iBQM iQ i?2 ;`�/B2Mi iQ
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∂7
∂θB
≈ 7((θR, . . . , θB + ϵ, . . . , θM))− 7((θR, . . . , θB − ϵ, . . . , θM))

kϵ

q?v /QMǶi r2 �Hr�vb Dmbi mb2 i?2 }MBi2 /Bz2`2M+2b �TT`QtBK�iBQM\
! bHQr, r2 M22/ iQ `2+QKTmi2 7 irB+2 7Q` 2�+? T�`�K2i2` BM Qm`

KQ/2HX
! MmK2`B+�H Bbbm2b



Stochastic Gradient Descent

I Any iteration of a gradient descent (or quasi-Newton) method
requires that we sum over the entire dataset to compute the
gradient.

I SGD idea: at each iteration, sub-sample a small amount of
data (even just 1 point can work) and use that to estimate
the gradient.

I Each update is noisy, but very fast!

I It can be shown that this method produces an unbiased
estimator of the true gradient.

I This is the basis of optimizing ML algorithms with huge
datasets (e.g., recent deep learning).



aiQ+?�biB+ :`�/B2Mi .2b+2Mi

! h?2 `2�bQM a:. rQ`Fb Bb #2+�mb2 bBKBH�` /�i� vB2H/b bBKBH�`
;`�/B2Mib- bQ B7 i?2`2 Bb 2MQm;? `2/mM/�M+v BM i?2 /�i�- i?2
MQBb2 7`QK bm#b�KTHBM; rQMǶi #2 bQ #�/X

! a:. Bb p2`v 2�bv iQ BKTH2K2Mi +QKT�`2/ iQ Qi?2` K2i?Q/b-
#mi i?2 bi2T bBx2b M22/ iQ #2 imM2/ iQ /Bz2`2Mi T`Q#H2Kb-
r?2`2�b #�i+? H2�`MBM; ivTB+�HHv ǳDmbi rQ`FbǴX

! hBT R, /BpB/2 i?2 HQ;@HBF2HB?QQ/ 2biBK�i2 #v i?2 bBx2 Q7 vQm`
KBMB@#�i+?2bX h?Bb K�F2b i?2 H2�`MBM; `�i2 BMp�`B�Mi iQ
KBMB@#�i+? bBx2X

! hBT k, bm#b�KTH2 rBi?Qmi `2TH�+2K2Mi bQ i?�i vQm pBbBi 2�+?
TQBMi QM 2�+? T�bb i?`Qm;? i?2 /�i�b2i Ui?Bb Bb FMQrM �b �M
2TQ+?VX



Definition of Convexity

A function f is convex if for any two points ✓1 and ✓2 and any
t 2 [0, 1],

f (t✓1 + (1� t)✓2)  tf (✓1) + (1� t)f (✓2)

We can compose convex functions such that the resulting function
is also convex:

I If f is convex, then so is ↵f for ↵ � 0

I If f1 and f2 are both convex, then so is f1 + f2



Why do we care about convexity?

I Any local minimum is a global minimum.

I This makes optimization a lot easier because we don’t have to
worry about getting stuck in a local minimum.



Examples of Convex Functions

I Quadratics

I Negative logarithms

I Cross-entropy objective function for logistic regression is also
convex!

f (✓) = �
X

n

y (n) logP(y = 1|x (n), ✓)+(1�y (n)) logP(y = 0|x (n), ✓)
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*QMp2tBiv 7Q` HQ;BbiB+ `2;`2bbBQM
*`Qbb@2Mi`QTv Q#D2+iBp2 7mM+iBQM 7Q` HQ;BbiB+ `2;`2bbBQM Bb �HbQ
+QMp2t5
7(θ) = −∑

M i(M) log T(v = R|t(M), θ) + (R− i(M)) log T(v = y|t(M), θ)
SHQi Q7 − log σ(θ)
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p2`bBQM �p�BH�#H2 7`QK lQ7h GB#`�`v



Cross-Validation 



Cross-Validation: Why Validate? 

So far: 
 Learning as Optimization 
 Goal:  Optimize model complexity (for the task) 
   while minimizing under/overfitting 

 
We want our model to generalize well without 
overfitting. 
We can ensure this by validating the model. 



Types of Validation 
Hold-Out Validation: Split data into training and 
validation sets. 
• Usually 30% as hold-out set. 

 
 
 

Problems: 
• Waste of dataset 
• Estimation of error rate might be misleading 

Original Training Set 

Validation 



Types of Validation 
• Cross-Validation: Random subsampling 

 
 
 
 
 
 

Problem: 
• More computationally expensive than hold-

out validation. 
 

Figure from 
Bishop, C.M. 
(2006). 
Pattern 
Recognition 
and Machine 
Learning. 
Springer 



Variants of Cross-Validation 
Leave-p-out: Use p examples as the validation set, and 
the rest as training; repeat for all configurations of 
examples. 
 
 
 
 
 
Problem: 
• Exhaustive. We have to train and test 𝑁

𝑝  times, 
where N is the # of training examples. 



Variants of Cross-Validation 
K-fold: Partition training data into K equally 
sized subsamples. For each fold, use the other K-
1 subsamples as training data with the last 
subsample as validation. 



K-fold Cross-Validation 

• Think of it like leave-p-out but without 
combinatoric amounts of training/testing. 

 
Advantages: 
• All observations are used for both training and 

validation. Each observation is used for 
validation exactly once. 

• Non-exhaustive: More tractable than leave-p-
out 



K-fold Cross-Validation 
Problems: 
• Expensive for large N, K (since we train/test K 

models on N examples). 
– But there are some efficient hacks to save time… 

• Can still overfit if we validate too many models! 
– Solution: Hold out an additional test set before doing 

any model selection, and check that the best model 
performs well on this additional set (nested cross-
validation).      =>     Cross-Validception 



Practical Tips for Using K-fold Cross-Val 

Q: How many folds do we need? 
A: With larger K, … 
• Error estimation tends to be more accurate 
• But, computation time will be greater 
 
In practice: 
• Usually use K ≈ 10 
• BUT, larger dataset => choose smaller K 


