CSC411: Optimization for Machine Learning

University of Toronto

September 18, 2024

Contents

» Overview
» Gradient Descent
> Convexity

Overview of Optimization

» An informal definition of optimization: Minimize (or
maximize) some quantity.

» Applications:
» Engineering: Minimize fuel consumption of an automobile
» Economics: Maximize returns on an investment
» Supply Chain Logistics: Minimize time taken to fulfill an order
» Life: Maximize happiness

» More formally:
> Goal: find 6* = f(0) (possibly subject to constraints on 8)
> 0 € R", optimization variable
» f:R" — R, objective function

Optimization for Machine Learning

v

Often in machine learning, we are interested in learning the
parameters # of a model.

Goal: minimize some loss function

For example, if we have some data (x, y), we may want to
maximize P(y|x,).

Equivalently, we can minimize — log P(y|x,).

We can also minimize other sorts of loss functions

Log can help for numerical reasons

Gradient Descent: Motivation

» From calculus, we know that the minimum of f must lie at a

; of(6r) _
point where =55~ = 0.

» Sometimes, we can solve this equation analytically for 6.

> Most of the time, we are not so lucky and must resort to
iterative methods.

Brief review:

» Gradient: Vyf = (%7'“,%)_

» “Vector giving the direction (and rate) of steepest increase for
f."

Outline of Gradient Descent Algorithm

Where 7 is the learning rate and T is the number of iterations:

» Initialize 6y randomly
» fort=1:T,
| 5t “— —ant_lf
> 0 0i_1+ 0
The learning rate shouldn’t be too big (objective function will blow
up) or too small (will take a long time to converge)

Gradient Descent with Momentum

We can introduce a momentum coefficient v € [0, 1) so that the
updates have "memory":

» Initialize 89 randomly
> Initialize &g to the zero vector
> fort=1:T,

> §; + —nVo, ,f+ adi_1

» 0y« 0;_1+ 0

Momentum is a nice trick that can help speed up convergence.
Generally we choose « between 0.8 and 0.95, but this is problem
dependent.

Some convergence criteria

» Change in objective function value is close to zero:
[f{0e1) — (0:)] < e
» Gradient norm is close to zero: ||Vyf]| < €
» Validation error starts to increase (this is called early stopping)

Checkgrad

» When implementing the gradient computation for machine
learning models, it's often difficult to know if our
implementation of fand Vfis correct.

» We can use finite-differences approximation to the gradient to
help:

gw f((@l,...,9;+e,...,9n))—f((@l,...,H,-—e,...,G,,))
80,’N 2¢

Why don't we always just use the finite differences approximation?

» slow: we need to recompute f twice for each parameter in our
model.

» numerical issues

Stochastic Gradient Descent

» Any iteration of a gradient descent (or quasi-Newton) method
requires that we sum over the entire dataset to compute the
gradient.

» SGD idea: at each iteration, sub-sample a small amount of
data (even just 1 point can work) and use that to estimate
the gradient.

» Each update is noisy, but very fast!

» |t can be shown that this method produces an unbiased
estimator of the true gradient.

» This is the basis of optimizing ML algorithms with huge
datasets (e.g., recent deep learning).

Stochastic Gradient Descent

» The reason SGD works is because similar data yields similar
gradients, so if there is enough redundancy in the data, the
noise from subsampling won't be so bad.

» SGD is very easy to implement compared to other methods,
but the step sizes need to be tuned to different problems,
whereas batch learning typically “just works".

» Tip 1: divide the log-likelihood estimate by the size of your
mini-batches. This makes the learning rate invariant to
mini-batch size.

» Tip 2: subsample without replacement so that you visit each
point on each pass through the dataset (this is known as an
epoch).

Definition of Convexity

A function f is convex if for any two points #; and 6, and any
t €10,1],

f(tby + (1 — t)fa) < tf(01) + (1 — t)f(62)

We can compose convex functions such that the resulting function
is also convex:

» If f is convex, then so is af for a >0

» If f1 and f» are both convex, then so is f; +

Why do we care about convexity?

» Any local minimum is a global minimum.

» This makes optimization a lot easier because we don’t have to
worry about getting stuck in a local minimum.

Examples of Convex Functions

» Quadratics
> Negative logarithms

» Cross-entropy objective function for logistic regression is also
convex!

f(@) = — Zy(n) |og P(y = 1|X(n), 9)+(1_y(n)) |Og P(y — 0|X(n), 9)

Examples of Convex Functions

Quadpratics

In [6]:

out[6]:

import matplotlib.pyplot as plt
plt.xked()

theta = linspace(-5, 5)

£ = theta**2

plt.plot(theta, f)

[<matplotlib.lines.Line2D at 0x3ceae90>]

25

20|=

15|=

10/=

Slide Type

Examples of Convex Functions

Negative logarithms

In [8]:

Out[8]:

import matplotlib.pyplot as plt
plt.xkecd()

theta = linspace(0.1, 5)

f = -np.log(theta)
plt.plot(theta, f)

[<matplotlib.lines.Line2D at 0x3ef4al0>]

2:R 7 0 ; 5 —_1

Slide Type

«~

Convexity for logistic regression

Cross-entropy objective function for logistic regression is also
convex!

f0) = — 3=, €7 log p(y = 11", 0) + (1 —) log p(y = 0]x("), 0)
Plot of —log o (0)

In [15]: Slide Type | -
def sigmoid(x):
return 1 / (1 + np.exp(-x))

theta = linspace(-5, 5)
f = -np.log(sigmoid(theta))
plt.plot(theta, f)

Out[15]: [<matplotlib.lines.Line2D at 0x4c453d0>]

6 T T 1 T T |
5= -
4|-

3]- =
2=

1|- -
B e o

More on optimization

» Automatic Differentiation Modern technique (used in libraries
like tensorflow, pytorch, etc) to efficiently compute the
gradients required for optimization. A survey of these
techniques can be found here:
https://arxiv.org/pdf/1502.05767.pdf

» Convex Optimization by Boyd & Vandenberghe Book available
for free online at http://www.stanford.edu/~boyd/cvxbook/

> Numerical Optimization by Nocedal & Wright Electronic
version available from UofT Library

Cross-Validation

Cross-Validation: Why Validate?

So far:
Learning as Optimization
Goal: Optimize model complexity (for the task)
while minimizing under/overfitting

We want our model to generalize well without
overfitting.

We can ensure this by validating the model.

Types of Validation

Hold-Out Validation: Split data into training and
validation sets.

* Usually 30% as hold-out set.

Original Training Set
< '

Training Validation

Problems:
 Waste of dataset
e Estimation of error rate might be misleading

Types of Validation

* Cross-Validation: Random subsampling

‘ I I ‘ run 1
Figure from
Bishop, C.M.

‘ I ‘ I ‘ run 2 (2006).
Pattern
Recognition

‘ I \ I ‘ run 3 and Machine
Learning.

y Springer
‘ ‘ l ‘ run 4

Problem:

* More computationally expensive than hold-
out validation.

Variants of Cross-Validation

Leave-p-out: Use p examples as the validation set, and

the rest as training; repeat for all configurations of
examples.

Total number of examples

Experiment 1

Experiment 2

e.g., for p=1:

Experiment 3

, Single test example
/

Experiment N

Problem:

 Exhaustive. We have to train and test (2’) times,
where N is the # of training examples.

Variants of Cross-Validation

K-fold: Partition training c

ata into K equally

sized subsamples. For each fold, use the other K-

1 subsamples as training d
subsample as validation.

k folds (all instances)

ata with the last

<

[e T N e

testing fold
L~ 8

K-fold Cross-Validation

* Think of it like leave-p-out but without
combinatoric amounts of training/testing.

Advantages:

* All observations are used for both training and
validation. Each observation is used for
validation exactly once.

* Non-exhaustive: More tractable than leave-p-
out

K-fold Cross-Validation

Problems:

* Expensive for large N, K (since we train/test K
models on N examples).

— But there are some efficient hacks to save time...

e Can still overfit if we validate too many models!

— Solution: Hold out an additional test set before doing
any model selection, and check that the best model
performs well on this additional set (nested cross-
validation). => Cross-Validception

Practical Tips for Using K-fold Cross-Val

Q: How many folds do we need?

A: With larger K, ...

* Error estimation tends to be more accurate
* But, computation time will be greater

In practice:
* Usually use K = 10
 BUT, larger dataset => choose smaller K

