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The Gaussian Distribution

1 For a D-dimensional vector x, the multivariate Gaussian
distribution takes the form:

1
N (el 5) = ———exp =2 G — WTE 7 x — )
(2m)2|X[2

] Motivations:

» Maximum of the entropy
> Central limit theorem

N =10




The Gaussian Distribution: Properties

 The law is a function of the Mahalanobis distance from x to u:

A= —w)'E7 e — )

[ The expectation of x under the Gaussian distribution is:

Elx] = u

 The covariance matrix of x is:

cov[x] =2



The Gaussian Distribution: Properties

 The law (quadratic function) is constant on elliptical surfaces:
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» A; are the eigenvalues of Z
» u; are the associated eigenvectors



The Gaussian Distribution: more examples

U Contours of constant probability density:

a) general form
b) diagonal
c) proportional to the identity matrix



Conditional Law

 Given a Gaussian distribution V' (x|u, £) with

X = (xa: xb)Tr U= (.uar .ub)T
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 What’s the conditional distribution p(x,|xp)?



Conditional Law
d What’s the conditional distribution p(x,|xp)?

1 1
= (x — )T 1(x — p) = —ExTZ_lx + x "2 u + const
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1 Using the definition:
y — (Zaa z:ab) — (Aaa Aab)_1
Zpa Zpb Apa  App
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Inverse partition identity:
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Conditional Law

 The conditional distribution p(x,|x;) is a Gaussian with:
Hap = Ha + ZapZph (Xp — 1p)
Yab = Zaa — ZabZpb Zba

 The form using precision matrix:

Ualp = Ua T+ AaaA;LI% (xp — up)

Aalb = Agq



Marginal Law

1 The marginal distribution is given by:
pica) = [ pCxa %),

O Picking out those terms that involve x;,, we have

1

——xp Appxp + xpm = -5

1
> (xp — Ag,%m)TAbb (xp — Appm) + EmTAggm

m = Appitp — Npa(Xq — Ug)

U Integrate over x; (unnormalized Gaussian)
1 -1\ -1
exp {_E (xb — Abbm) App (xb — Abbm)} dxp

v The integral is equal to the normalization term



Marginal Law
(] After integrating over x;, we pick out the remaining terms:

——x A (A Apiip) L TAZEm + t
zxa aaXa T Xq DNgalla T NgplUp +2m pp™M T CONS

m = Appp — Mpa(xgq — g)

 The marginal distribution is a Gaussian with

Elxq] = tq covlxg] = Zgq



Short Summary

zp =0.7
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y — (Zaa z:ab) — (Aaa Aab)_1
Xpa Zbb Apg  App

[ Conditional distribution:
p(xalxb) — N(xalﬂalb»AZlcll
Hap = Ha — Ngalap (Xp — Up)

 Marginal distribution:
p(xq) = N (Xqltar Zaa)
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Bayes’ theorem for Gaussian variables

 Setup:
p(x) = N (x|u, A7)
p(y|x) = N(y|Ax + b, L71)

O What’s the marginal distribution p(y) and conditional
distribution p(x|y)?

v How about first compute p(z), where z = (x, y) "

v p(z) is a Gaussian distribution, consider the log of the
joint distribution

Inp(z) =Inp(x) + Inp(y|x)

1
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Bayes’ theorem for Gaussian variables

[ The same trick (consider the second order terms), we get

Elz] = (A,uu+ b)

A1 A1A
covlz] = (AA-1 -1y AA‘lA)

 We can then get p(y) and p(x|y) by marginal and conditional
laws!



Maximum likelihood for the Gaussian

3 Assume we have X = (x4, ..., xy) " in which the observation
{x,,} are assumed to be drawn independently from a
multivariate Gaussian, the log likelihood function is given by

N
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Inp(X|p, Z) = —Tlﬂ 21 — 31n|2| - EZ(’“" —W'Z 7 ey — )
n=1

U Setting the derivative to zero, we obtain the solution for the
maximum likelihood estimator:
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Maximum likelihood for the Gaussian

M The empirical mean is unbiased in the sense

ElumL] = u

 However, the maximum likelihood estimate for the covariance
has an expectation that is less that the true value:

N-1

E[XmL] = TZ

v We can correct it by multiplying Zy, by the factor%



Conjugate prior for the Gaussian

[ The maximum likelihood framework only gives point estimates
for the parameters, we would like to have uncertainty
estimation (confidence interval) for the estimation

v Introducing prior distributions over the parameters of the
Gaussian

O We would like the posterior p(8|D) « p(68)p(D|6) has the
same form as the prior (Conjugate prior!)

v The conjugate prior for u is a Gaussian

v" The conjugate prior for precision A is a Gamma distribution



The Gaussian Distribution: limitations

. D?+D
1 A lot of parameters to estimate D +

: structured
approximation (e.g., diagonal variance matrix)

J Maximum likelihood estimators are not robust to outliers:
Student’s t-distribution (bottom left)

[ Not able to describe periodic data: von Mises distribution

1 Unimodel distribution: Mixture of Gaussian (bottom right)
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The Gaussian Distribution: frontiers

(] Gaussian Process
[ Bayesian Neural Networks

[ Generative modeling (Variational Autoencoder)



