
CSC 2516: Introduction to Machine Learning
Week 11 Tutorial - EM Algorithm

Fall 2024

University of Toronto, Fall 2024

Intro ML (Graduate) (UofT) CSC2515-Tut11 1 / 17



Bernoulli Distribution

Bernoulli distribution: X is a random variable with two outcomes.
We say that X follows B(x;µ) if:

P (X = x) = µx(1− µ)1−x, x ∈ {0, 1} =

{
µ x = 1

1− µ x = 0

Mean: E[B(x;µ)] = 1× Pr(x = 1) + 0× Pr(x = 0) = µ

Variance:

Var[B(x;µ)] = E[B(x2;µ)]− E[B(x;µ)2]
= 12 × Pr(x = 1) + 02 × Pr(x = 0)− µ2

= µ− µ2

= µ(1− µ)

Example: A coin follows Bernoulli distribution.
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Mixture of Bernoulli

Mixture of Gaussians is defined over continuous variables. Mixture
of Bernoulli can be seen as its counterpart for binary variables.

Like a GMM, a plausible data generation “story” for x is:

Given K clusters, {1, . . . ,K}
Sample a cluster z ∼ Pr(z)

We parameterize Pr(z) with π, i.e., Pr(z = k) = πk

Given z, sample x ∼ B(x;µk).
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Mixture of Bernoulli

We say x follows mixtures of Bernoulli distributions.

Recall:

Pr(z = k) = πk

Pr(x|z = k) = µx
k(1− µk)

1−x

Pr(x, z = k) = Pr(x|z = k) Pr(z = k) = µx
k(1− µk)

1−x × πk

Pr(x) =
∑K

k=1 Pr(x, z = k), marginalization

Thus, the pmf of X can be expressed as:

Pr(x) =

K∑
k=1

µx
k(1− µk)

1−x × πk

Note that we can tell that µx
k(1− µk)

1−x is conditioned on zn = k
as we are using µk
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Maximum Likelihood

We want to learn the parameters {π1, . . . , πk, µ1, . . . , µk} from the
observations {xi}Ni=1.

We want to select parameters that maximize the log likelihood of
the observed data,
log Pr(x1, . . . , xn) = log

∏N
n=1 Pr(xn) =

∑N
n=1 log Pr(xn).

Training Objective:

max
π,µ

N∑
n=1

log Pr(Xn)

max
π,µ

N∑
n=1

log
K∑
k=1

µxn
k (1− µk)

1−xn × πk

Sum inside log → EM algorithm
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Fully Supervised Case

If our data included zn values, MLE would be much easier.

log Pr(X,Z;µ, π) =

N∑
n=1

log Pr(xn, zn;µ, π)

=

N∑
n=1

log Pr(xn|zn;µ, π) Pr(zn;µ, π)

Above, we know what the value of zn is, so we can just write it
down in terms of zn, but we could also express it as a sum. The
indicator function ensures only a single term contributes, so the
value is the same. This will allow easier manipulations later.

=

N∑
n=1

K∑
k=1

I[zn = k] log Pr(xn|zn;µ, π) Pr(zn;µ, π)
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E-step: Why “Expectation”

We don’t know that actual values of zn, i.e., when I[zn = k] = 1,
they are latent

We do know how to ask “how likely is the value zn = k according
to our model?”

Using the posterior probability, Pr(zn = k|xn;µ, π).

Why can’t we just use the most likely zn value and call it a day?

Instead we want to consider all the possible assignments to zn
Asked another way, what are the expected values of zn?

E[I[zn = k|x;µ, π]] =
∑K

k=1 I[zn = k|xn;µ, π] Pr(zn = k|xn;µ, π) =
Pr(zn = k|xn;µ, π)
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E-step: Compute the Posterior

Compute the posterior probability znk = Pr(zn = k|xn) using
Bayes’ theorem:

Pr(zn = k|xn) =
Pr(zn = k, xn)

Pr(xn)
=

Pr(xn|zn = k) Pr(zn = k)∑K
k′=1 Pr(xn|zn = k′) Pr(zn = k′)

=
µxn
k (1− µk)

1−xn × πk∑K
k′=1 µ

xn
i (1− µi)1−xn × πk′

znk can be interpreted as how much we think a cluster k is
responsible for generating a datapoint xn.
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M-step - optimize the joint log likelihood

The joint likelihood can be expressed as:

log p(X,Z;µ, π)

=

N∑
n=1

K∑
k=1

znk(log πk + xn logµk + (1− xn) log(1− µk))

log p(X,Z;µ, π)

=
N∑

n=1

K∑
k=1

znk(log πk + xn logµk + (1− xn) log(1− µk))
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M-step: Optimize the Joint Log Likelihood

Lets look back at our joint likelihood:

log Pr(X,Z;µ, π)

=

N∑
n=1

K∑
k=1

I[zn = k] Pr(xn|zn;µ, π) Pr(zn;µ, π)

Now lets replace the known I[zn = k] with our expectation given
the current parameters.

=

N∑
n=1

E

[
K∑
k=1

I[zn = k] Pr(xn|zn;µ, π) Pr(zn;µ, π)

]

=

N∑
n=1

K∑
k=1

znk Pr(xn|zn;µ, π) Pr(zn;µ, π)

=

N∑
n=1

K∑
k=1

znk(xn logµk + (1− xn) log(1− µk) + log πk)
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M-step: Optimizing the Joint Log Likelihood

Assume the znk is known, setting the derivative respect to µk to
zero, we get:

µk =

∑N
n=1 znkxn∑N
n=1 znk

Similarly for πk:

πk =

∑N
n=1 znk
N

Interpretation: The mean of component k is equal to the weighted
mean of the data, with weighted coefficients proportional to the
responsibility.
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Example
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True or False

The EM algorithm optimizes a lower bound on its objective function,
which is the marginal likelihood

∏
i P (xi) of the observed data points

x1, x2, ...xN .

True.
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True or False

The EM algorithm is guaranteed to never decrease the value of its
objective function on any iteration.

True
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True or False

The objective function optimized by the EM algorithm can also be
optimized by a gradient descent algorithm which will find the global
optimal solution, whereas EM finds its solution more quickly but may
return only a locally optimal solution.

False
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True or False

Consider the set of training data below, and two clustering algorithms:
K-Means, and a Gaussian Mixture Model (GMM) trained using EM.
These two clustering algorithms will produce the same cluster centers
(means) for this data set.

False. In k-means, the means of the clusters are determined by an
average of the points assigned to that cluster, but in GMM the means
of each cluster are (differently) weighted averages of all points.
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HMMs

Hidden Markov Models

Classic NLP model for things like Part of Speech Tagging

Used in things like Computational Biology for Genome Tagging

EM is used for unsupervised training, called Baum-Welch

Intro ML (Graduate) (UofT) CSC2515-Tut11 17 / 17


